Genomic analysis and phytoprobiotic characteristics of Acinetobacter pittii P09: A p-hydroxybenzoic acid-degrading plant-growth promoting rhizobacteria

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xijian Liu , Li Sun , Shuaibing Wang , Zitian Pu , Runze Cao , Shuaishuai Wu , Zhihong Xie , Dandan Wang
{"title":"Genomic analysis and phytoprobiotic characteristics of Acinetobacter pittii P09: A p-hydroxybenzoic acid-degrading plant-growth promoting rhizobacteria","authors":"Xijian Liu ,&nbsp;Li Sun ,&nbsp;Shuaibing Wang ,&nbsp;Zitian Pu ,&nbsp;Runze Cao ,&nbsp;Shuaishuai Wu ,&nbsp;Zhihong Xie ,&nbsp;Dandan Wang","doi":"10.1016/j.eti.2025.104113","DOIUrl":null,"url":null,"abstract":"<div><div><em>p</em>-hydroxybenzoic acid (PHBA), as a representative allelochemical, accumulates in soil and poses significant risks to the growth and development of crops, and this study aims to solve the challenge of PHBA autotoxicity through microbial bioremediation. A novel strain <em>Acinetobacter pittii</em> P09 was isolated from the rhizosphere of peanut, exhibiting highly efficient bioremediation and plant growth-promoting functions. Through whole-genome sequencing (3843,723 bp chromosome, 38.88 % GC content) analysis, the key genomic determinants enabling PHBA degradation and plant-beneficial traits including IAA, phosphate solubilization, and biofilm formation were identified. In addition, the application of strain P09 not only significantly enhanced peanut germination and plant growth, but also augmented the activities of antioxidant enzymes under PHBA stress. Overall, these findings demonstrate that <em>Acinetobacter pittii</em> P09 is a multifunctional plant growth-promoting rhizobacteria capable of alleviating autotoxicity stress and facilitating organic agriculture applications.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104113"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186425000999","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

p-hydroxybenzoic acid (PHBA), as a representative allelochemical, accumulates in soil and poses significant risks to the growth and development of crops, and this study aims to solve the challenge of PHBA autotoxicity through microbial bioremediation. A novel strain Acinetobacter pittii P09 was isolated from the rhizosphere of peanut, exhibiting highly efficient bioremediation and plant growth-promoting functions. Through whole-genome sequencing (3843,723 bp chromosome, 38.88 % GC content) analysis, the key genomic determinants enabling PHBA degradation and plant-beneficial traits including IAA, phosphate solubilization, and biofilm formation were identified. In addition, the application of strain P09 not only significantly enhanced peanut germination and plant growth, but also augmented the activities of antioxidant enzymes under PHBA stress. Overall, these findings demonstrate that Acinetobacter pittii P09 is a multifunctional plant growth-promoting rhizobacteria capable of alleviating autotoxicity stress and facilitating organic agriculture applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信