Dandan Hu , Yanhong Ye , Qianlin Zhu , Ruyue Cong , Jingran Sun , Kaiyue Hu , Yufang Hu
{"title":"Dual-mode DNA nano-stage biosensing platform for efficient detection of uracil-DNA glycosylase activity in cells","authors":"Dandan Hu , Yanhong Ye , Qianlin Zhu , Ruyue Cong , Jingran Sun , Kaiyue Hu , Yufang Hu","doi":"10.1016/j.bioelechem.2025.108950","DOIUrl":null,"url":null,"abstract":"<div><div>Analyzing uracil-DNA glycosylase (UDG) activity is essential for understanding DNA repair mechanisms in disease progression and treatment. This study presents a dual-mode DNA nano-stage biosensing platform integrating electrochemiluminescence (ECL) and electrochemical impedance spectroscopy (EIS) for highly sensitive and specific UDG detection. A DNA-prism-modified electrode immobilizes UDG-responsive elements, forming a stable and efficient detection interface. Upon UDG cleavage, released DNA fragments initiate rapid nano-stage assembly, significantly amplifying the signal output. ECL signals are produced by embedded [Ru(phen)<sub>3</sub>]<sup>2+</sup> complexes, while EIS signals result from the reaction of 3,3′-diaminobenzidine (DAB) with H<sub>2</sub>O<sub>2</sub>, catalyzed by manganese tetrakis(4-<em>N</em>-methylpyridyl)porphyrin (MnTMPyP). The platform achieves an exceptional detection limit of 1.0 × 10<sup>−5</sup> U/mL, effectively validating the inhibitory effects of UDG inhibitors. Furthermore, a strong correlation between UDG activity and HeLa cell number is demonstrated. Compared to a commercial UDG detection kit, the biosensor exhibits comparable sensitivity with enhanced versatility. Notably, UDG activity is significantly higher in cancerous cells than in normal cells, reflecting the increased DNA repair demand in malignancy. This capability to distinguish UDG activity among different cell types highlights its potential for cancer diagnostics, while this biosensor platform shows promise for broader applications in clinical diagnostics, cancer research, and drug discovery.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108950"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000532","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Analyzing uracil-DNA glycosylase (UDG) activity is essential for understanding DNA repair mechanisms in disease progression and treatment. This study presents a dual-mode DNA nano-stage biosensing platform integrating electrochemiluminescence (ECL) and electrochemical impedance spectroscopy (EIS) for highly sensitive and specific UDG detection. A DNA-prism-modified electrode immobilizes UDG-responsive elements, forming a stable and efficient detection interface. Upon UDG cleavage, released DNA fragments initiate rapid nano-stage assembly, significantly amplifying the signal output. ECL signals are produced by embedded [Ru(phen)3]2+ complexes, while EIS signals result from the reaction of 3,3′-diaminobenzidine (DAB) with H2O2, catalyzed by manganese tetrakis(4-N-methylpyridyl)porphyrin (MnTMPyP). The platform achieves an exceptional detection limit of 1.0 × 10−5 U/mL, effectively validating the inhibitory effects of UDG inhibitors. Furthermore, a strong correlation between UDG activity and HeLa cell number is demonstrated. Compared to a commercial UDG detection kit, the biosensor exhibits comparable sensitivity with enhanced versatility. Notably, UDG activity is significantly higher in cancerous cells than in normal cells, reflecting the increased DNA repair demand in malignancy. This capability to distinguish UDG activity among different cell types highlights its potential for cancer diagnostics, while this biosensor platform shows promise for broader applications in clinical diagnostics, cancer research, and drug discovery.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.