{"title":"Full determination of chemical shift tensor in magnetically oriented microcrystals with modulated rotation and temporal tilt","authors":"Ryosuke Kusumi , Hayate Yasui , Hiroshi Kadoma , Masahisa Wada , Kazuyuki Takeda","doi":"10.1016/j.jmr.2025.107853","DOIUrl":null,"url":null,"abstract":"<div><div>Complete characterization of <sup>13</sup>C chemical shift tensor in magnetically oriented microcrystal suspension (MOMS) is demonstrated with an inhouse <sup>1</sup>H-<sup>13</sup>C double resonance probe capable of rotating microcrystals and of tilting the sample temporarily during the period of NMR signal acquisition. The <sup>13</sup>C chemical shift tensor in three-dimensional MOMS of <span>l</span>-alanine is determined from <sup>13</sup>C rotation patterns around a tilted axis. The present results prove that even for micrometer-sized microcrystals the chemical shift tensor can be fully determined like in the case of a single piece of bulky crystal but without elaborate sample mounting. Two-dimensional experiments correlating chemical shifts for different sample orientations are also demonstrated.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"373 ","pages":"Article 107853"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000254","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Complete characterization of 13C chemical shift tensor in magnetically oriented microcrystal suspension (MOMS) is demonstrated with an inhouse 1H-13C double resonance probe capable of rotating microcrystals and of tilting the sample temporarily during the period of NMR signal acquisition. The 13C chemical shift tensor in three-dimensional MOMS of l-alanine is determined from 13C rotation patterns around a tilted axis. The present results prove that even for micrometer-sized microcrystals the chemical shift tensor can be fully determined like in the case of a single piece of bulky crystal but without elaborate sample mounting. Two-dimensional experiments correlating chemical shifts for different sample orientations are also demonstrated.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.