Junwei Wang , Shuhui Wang , Meng Wang , Jinfei Yang
{"title":"Analysis of genes implicated in non-obstructive azoospermia","authors":"Junwei Wang , Shuhui Wang , Meng Wang , Jinfei Yang","doi":"10.1016/j.steroids.2025.109583","DOIUrl":null,"url":null,"abstract":"<div><div>Non-obstructive azoospermia (NOA) is the most common cause of male infertility, accounting for approximately 60 % of azoospermia cases. In recent years, gene mutations have emerged as the primary factor under investigation for the etiology of NOA. Therefore, finding the cause and pathogenesis of NOA at the genetic level has become one of the current research hotspots. Genetic analysis of NOA patients revealed that gene mutations primarily concentrate in protein-coding regions and non-coding RNAs, predominantly occurring in cases of non-obstructive azoospermia. Hence, understanding the relationship between these gene mutations and NOA can not only provide new ideas for treatment, but also provide a theoretical basis for revealing the pathogenesis of NOA. This article comprehensively reviews recent advancements in identifying genes that are intricately associated with azoospermia. These results will provide meaningful guidance for the future development of NOA-targeted therapeutic drugs.</div></div>","PeriodicalId":21997,"journal":{"name":"Steroids","volume":"216 ","pages":"Article 109583"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steroids","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039128X25000248","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-obstructive azoospermia (NOA) is the most common cause of male infertility, accounting for approximately 60 % of azoospermia cases. In recent years, gene mutations have emerged as the primary factor under investigation for the etiology of NOA. Therefore, finding the cause and pathogenesis of NOA at the genetic level has become one of the current research hotspots. Genetic analysis of NOA patients revealed that gene mutations primarily concentrate in protein-coding regions and non-coding RNAs, predominantly occurring in cases of non-obstructive azoospermia. Hence, understanding the relationship between these gene mutations and NOA can not only provide new ideas for treatment, but also provide a theoretical basis for revealing the pathogenesis of NOA. This article comprehensively reviews recent advancements in identifying genes that are intricately associated with azoospermia. These results will provide meaningful guidance for the future development of NOA-targeted therapeutic drugs.
期刊介绍:
STEROIDS is an international research journal devoted to studies on all chemical and biological aspects of steroidal moieties. The journal focuses on both experimental and theoretical studies on the biology, chemistry, biosynthesis, metabolism, molecular biology, physiology and pharmacology of steroids and other molecules that target or regulate steroid receptors. Manuscripts presenting clinical research related to steroids, steroid drug development, comparative endocrinology of steroid hormones, investigations on the mechanism of steroid action and steroid chemistry are all appropriate for submission for peer review. STEROIDS publishes both original research and timely reviews. For details concerning the preparation of manuscripts see Instructions to Authors, which is published in each issue of the journal.