EnTube: Exploring key video features for advancing YouTube engagement

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS
Truong Le, Minh-Vuong Nguyen-Thi, Minh-Tu Le, Hien-Vi Nguyen-Thi, Tung Le, Huy Tien Nguyen
{"title":"EnTube: Exploring key video features for advancing YouTube engagement","authors":"Truong Le,&nbsp;Minh-Vuong Nguyen-Thi,&nbsp;Minh-Tu Le,&nbsp;Hien-Vi Nguyen-Thi,&nbsp;Tung Le,&nbsp;Huy Tien Nguyen","doi":"10.1016/j.entcom.2025.100934","DOIUrl":null,"url":null,"abstract":"<div><div>The proliferation of video sharing on platforms like YouTube has highlighted the importance of accurately predicting video engagement. Existing models for predicting video appeal face challenges in transparency and accuracy. This study proposes a multi-modal deep learning approach to forecast video engagement on YouTube. We utilize a multi-modal deep learning model that integrates video titles, audio, thumbnails, content, and tags for engagement prediction, classifying videos into three engagement categories: Engage, Neutral, and Not Engage. A unique dataset, the EnTube dataset, was compiled, featuring 23,738 videos from various genres and 72 Vietnamese YouTube channels. This dataset aids in overcoming the obstacles of data collection and analysis for video engagement. Our approach demonstrates the potential of multi-modal features in enhancing prediction accuracy beyond single-feature models. Explainable Artificial Intelligence techniques are employed to interpret the factors influencing video engagement, offering insights for content optimization. The study’s findings hold promise for applications in video recommendation systems and content strategy adjustments.</div></div>","PeriodicalId":55997,"journal":{"name":"Entertainment Computing","volume":"53 ","pages":"Article 100934"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entertainment Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187595212500014X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of video sharing on platforms like YouTube has highlighted the importance of accurately predicting video engagement. Existing models for predicting video appeal face challenges in transparency and accuracy. This study proposes a multi-modal deep learning approach to forecast video engagement on YouTube. We utilize a multi-modal deep learning model that integrates video titles, audio, thumbnails, content, and tags for engagement prediction, classifying videos into three engagement categories: Engage, Neutral, and Not Engage. A unique dataset, the EnTube dataset, was compiled, featuring 23,738 videos from various genres and 72 Vietnamese YouTube channels. This dataset aids in overcoming the obstacles of data collection and analysis for video engagement. Our approach demonstrates the potential of multi-modal features in enhancing prediction accuracy beyond single-feature models. Explainable Artificial Intelligence techniques are employed to interpret the factors influencing video engagement, offering insights for content optimization. The study’s findings hold promise for applications in video recommendation systems and content strategy adjustments.
YouTube:探索关键视频功能,以提高YouTube的参与度
YouTube等平台上视频分享的激增凸显了准确预测视频参与度的重要性。现有的视频申诉预测模型在透明度和准确性方面面临挑战。本研究提出了一种多模态深度学习方法来预测YouTube上的视频参与度。我们使用了一个多模态深度学习模型,该模型集成了视频标题、音频、缩略图、内容和标签,用于参与度预测,并将视频分为三种参与度类别:参与度、中性和非参与度。编译了一个独特的数据集,即YouTube数据集,其中包括来自不同类型的23,738个视频和72个越南YouTube频道。该数据集有助于克服视频参与数据收集和分析的障碍。我们的方法证明了多模态特征在提高单特征模型预测精度方面的潜力。可解释的人工智能技术被用来解释影响视频参与的因素,为内容优化提供见解。该研究的发现为视频推荐系统和内容策略调整的应用带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entertainment Computing
Entertainment Computing Computer Science-Human-Computer Interaction
CiteScore
5.90
自引率
7.10%
发文量
66
期刊介绍: Entertainment Computing publishes original, peer-reviewed research articles and serves as a forum for stimulating and disseminating innovative research ideas, emerging technologies, empirical investigations, state-of-the-art methods and tools in all aspects of digital entertainment, new media, entertainment computing, gaming, robotics, toys and applications among researchers, engineers, social scientists, artists and practitioners. Theoretical, technical, empirical, survey articles and case studies are all appropriate to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信