François Rouzé l’Alzit, Benoit Glorieux, Thierry Cardinal, Manuel Gaudon
{"title":"Powder bed fusion on single lines of Cu-doped hydroxyapatite powder bed","authors":"François Rouzé l’Alzit, Benoit Glorieux, Thierry Cardinal, Manuel Gaudon","doi":"10.1016/j.matdes.2025.113757","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to design ceramic scaffolds for precise bone reconstruction using Powder Bed Laser Sintering (PBLS) to create cohesive Cu-doped HAp ribbons from a single lasered line on a thin powder bed atop a silicate lime substrate. Depending on laser parameters, two ribbon types—delaminated (CDR) or anchored (CAR)—are produced, both exhibiting surface density gradients from the center to the edges. Microscale analysis reveals surface density gradients in both ribbon types, extending from center to edge. CDRs also show depth-wise density variations, resulting in mechanical stresses that cause detachment and curling. In CARs, intense local heating and thermal conductivity cause a temperature rise beyond the irradiated area. The substrate acts as a thermal barrier, concentrating heat at the film-substrate interface and ensuring ribbon adhesion. Cracks propagate perpendicular to isothermal lines, enabling controlled crack patterning.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113757"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525001777","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to design ceramic scaffolds for precise bone reconstruction using Powder Bed Laser Sintering (PBLS) to create cohesive Cu-doped HAp ribbons from a single lasered line on a thin powder bed atop a silicate lime substrate. Depending on laser parameters, two ribbon types—delaminated (CDR) or anchored (CAR)—are produced, both exhibiting surface density gradients from the center to the edges. Microscale analysis reveals surface density gradients in both ribbon types, extending from center to edge. CDRs also show depth-wise density variations, resulting in mechanical stresses that cause detachment and curling. In CARs, intense local heating and thermal conductivity cause a temperature rise beyond the irradiated area. The substrate acts as a thermal barrier, concentrating heat at the film-substrate interface and ensuring ribbon adhesion. Cracks propagate perpendicular to isothermal lines, enabling controlled crack patterning.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.