Optical Singularities in Photonic Microstructures with Rosette Symmetries: A Unified Theoretical Scheme

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jie Yang , Jiafu Wang , Xinmin Fu , Yueting Pan , Tie Jun Cui , Xuezhi Zheng
{"title":"Optical Singularities in Photonic Microstructures with Rosette Symmetries: A Unified Theoretical Scheme","authors":"Jie Yang ,&nbsp;Jiafu Wang ,&nbsp;Xinmin Fu ,&nbsp;Yueting Pan ,&nbsp;Tie Jun Cui ,&nbsp;Xuezhi Zheng","doi":"10.1016/j.eng.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>Optical singularities are topological defects of electromagnetic fields; they include phase singularity in scalar fields, polarization singularity in vector fields, and three-dimensional (3D) singularities such as optical skyrmions. The exploitation of photonic microstructures to generate and manipulate optical singularities has attracted wide research interest in recent years, with many photonic microstructures having been devised to this end. Accompanying these designs, scattered phenomenological theories have been proposed to expound the working mechanisms behind individual designs. In this work, instead of focusing on a specific type of microstructure, we concentrate on the most common geometric features of these microstructures—namely, symmetries—and revisit the process of generating optical singularities in microstructures from a symmetry viewpoint. By systematically employing the projection operator technique in group theory, we develop a widely applicable theoretical scheme to explore optical singularities in microstructures with rosette (i.e., rotational and reflection) symmetries. Our scheme agrees well with previously reported works and further reveals that the eigenmodes of a symmetric microstructure can support multiplexed phase singularities in different components, such as out-of-plane, radial, azimuthal, and left- and right-handed circular components. Based on these phase singularities, more complicated optical singularities may be synthesized, including C points, V points, L lines, Néel- and bubble-type optical skyrmions, and optical lattices, to name a few. We demonstrate that the topological invariants associated with optical singularities are protected by the symmetries of the microstructure. Lastly, based on symmetry arguments, we formulate a so-called symmetry matching condition to clarify the excitation of a specific type of optical singularity. Our work establishes a unified theoretical framework to explore optical singularities in photonic microstructures with symmetries, shedding light on the symmetry origin of multidimensional and multiplexed optical singularities and providing a symmetry perspective for exploring many singularity-related effects in optics and photonics.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"45 ","pages":"Pages 59-69"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924006374","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical singularities are topological defects of electromagnetic fields; they include phase singularity in scalar fields, polarization singularity in vector fields, and three-dimensional (3D) singularities such as optical skyrmions. The exploitation of photonic microstructures to generate and manipulate optical singularities has attracted wide research interest in recent years, with many photonic microstructures having been devised to this end. Accompanying these designs, scattered phenomenological theories have been proposed to expound the working mechanisms behind individual designs. In this work, instead of focusing on a specific type of microstructure, we concentrate on the most common geometric features of these microstructures—namely, symmetries—and revisit the process of generating optical singularities in microstructures from a symmetry viewpoint. By systematically employing the projection operator technique in group theory, we develop a widely applicable theoretical scheme to explore optical singularities in microstructures with rosette (i.e., rotational and reflection) symmetries. Our scheme agrees well with previously reported works and further reveals that the eigenmodes of a symmetric microstructure can support multiplexed phase singularities in different components, such as out-of-plane, radial, azimuthal, and left- and right-handed circular components. Based on these phase singularities, more complicated optical singularities may be synthesized, including C points, V points, L lines, Néel- and bubble-type optical skyrmions, and optical lattices, to name a few. We demonstrate that the topological invariants associated with optical singularities are protected by the symmetries of the microstructure. Lastly, based on symmetry arguments, we formulate a so-called symmetry matching condition to clarify the excitation of a specific type of optical singularity. Our work establishes a unified theoretical framework to explore optical singularities in photonic microstructures with symmetries, shedding light on the symmetry origin of multidimensional and multiplexed optical singularities and providing a symmetry perspective for exploring many singularity-related effects in optics and photonics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信