Vectorial Digitelligent Optics for High-Resolution Non-Line-of-Sight Imaging

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yinghui Guo , Yunsong Lei , Mingbo Pu , Fei Zhang , Qi Zhang , Xiaoyin Li , Runzhe Zhang , Zhibin Zhao , Rui Zhou , Yulong Fan , Xiangang Luo
{"title":"Vectorial Digitelligent Optics for High-Resolution Non-Line-of-Sight Imaging","authors":"Yinghui Guo ,&nbsp;Yunsong Lei ,&nbsp;Mingbo Pu ,&nbsp;Fei Zhang ,&nbsp;Qi Zhang ,&nbsp;Xiaoyin Li ,&nbsp;Runzhe Zhang ,&nbsp;Zhibin Zhao ,&nbsp;Rui Zhou ,&nbsp;Yulong Fan ,&nbsp;Xiangang Luo","doi":"10.1016/j.eng.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>Object imaging beyond the direct line of sight is significant for applications in robotic vision, remote sensing, autonomous driving, and many other areas. Reconstruction of a non-line-of-sight (NLOS) screen is a complex inverse problem that comes with ultrafast time-resolved imager requirements and substantial computational demands to extract information from the multi-bounce scattered light. Consequently, the echo signal always suffers from serious deterioration in both intensity and shape, leading to limited resolution and image contrast. Here, we propose a concept of vectorial digitelligent optics for high-resolution NLOS imaging to cancel the wall’s scattering and refocus the light onto hidden targets for enhanced echo. In this approach, the polarization and wavefront of the laser spot are intelligently optimized via a feedback algorithm to form a near-perfect focusing pattern through a random scattering wall. By raster scanning the focusing spot across the object’s surface within the optical-memory-effect range of the wall, we obtain nearly diffraction-limited NLOS imaging with an enhanced signal-to-noise ratio. Our experimental results demonstrate a resolution of 0.40 mm at a distance of 0.35 m, reaching the diffraction limit of the system. Furthermore, we demonstrate that the proposed method is feasible for various complex NLOS scenarios. Our methods may open an avenue for active imaging, communication, and laser wireless power transfer.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"45 ","pages":"Pages 70-78"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924006623","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Object imaging beyond the direct line of sight is significant for applications in robotic vision, remote sensing, autonomous driving, and many other areas. Reconstruction of a non-line-of-sight (NLOS) screen is a complex inverse problem that comes with ultrafast time-resolved imager requirements and substantial computational demands to extract information from the multi-bounce scattered light. Consequently, the echo signal always suffers from serious deterioration in both intensity and shape, leading to limited resolution and image contrast. Here, we propose a concept of vectorial digitelligent optics for high-resolution NLOS imaging to cancel the wall’s scattering and refocus the light onto hidden targets for enhanced echo. In this approach, the polarization and wavefront of the laser spot are intelligently optimized via a feedback algorithm to form a near-perfect focusing pattern through a random scattering wall. By raster scanning the focusing spot across the object’s surface within the optical-memory-effect range of the wall, we obtain nearly diffraction-limited NLOS imaging with an enhanced signal-to-noise ratio. Our experimental results demonstrate a resolution of 0.40 mm at a distance of 0.35 m, reaching the diffraction limit of the system. Furthermore, we demonstrate that the proposed method is feasible for various complex NLOS scenarios. Our methods may open an avenue for active imaging, communication, and laser wireless power transfer.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信