{"title":"Na+ self-diffusion and ionic transport in sodium β″-alumina","authors":"Sarah Lunghammer, H. Martin R. Wilkening","doi":"10.1016/j.ssi.2025.116809","DOIUrl":null,"url":null,"abstract":"<div><div>Fast ion transport is crucial for solid materials to serve as electrolytes, with only a few classes achieving the high ionic conductivity needed for practical use. The discovery of fast ion transport in Na <em>β</em>″-alumina not only introduced a groundbreaking class of materials but also marked the advent of the research field now known as <em>solid-state ionics</em>. Since the early 1980s, Na <em>β</em>″-alumina has been widely recognized as a solid electrolyte for high-temperature sodium-based batteries, such as Na‑sulfur batteries. Despite numerous studies on the diffusion and transport properties of layer-structured Na <em>β</em>″-alumina, a comprehensive investigation combining conductivity and nuclear magnetic resonance (NMR) to study both short-range and long-range ion dynamics has been lacking. In this work, we used a commercially available, highly sintered Na <em>β</em>″-alumina sample to explore Na<sup>+</sup> dynamics in detail through GHz conductivity spectroscopy and <sup>23</sup>Na nuclear spin relaxation. The two methods provide a rather consistent picture of ion transport. While long-range Na<sup>+</sup> transport, reaching a conductivity of 4 mS cm<sup>−1</sup> at ambient temperature, is governed by an activation energy of 0.3 eV, short-range motions sense a barrier of 0.13 eV. The Arrhenius pre-factor obtained from characteristic electric relaxation frequencies is consist with that determined from diffusion-induced longitudinal NMR spin-lattice relaxation rates if analyzed with a modified BPP (Bloembergen, Purcell, Pound) spectral density function.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"422 ","pages":"Article 116809"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000281","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fast ion transport is crucial for solid materials to serve as electrolytes, with only a few classes achieving the high ionic conductivity needed for practical use. The discovery of fast ion transport in Na β″-alumina not only introduced a groundbreaking class of materials but also marked the advent of the research field now known as solid-state ionics. Since the early 1980s, Na β″-alumina has been widely recognized as a solid electrolyte for high-temperature sodium-based batteries, such as Na‑sulfur batteries. Despite numerous studies on the diffusion and transport properties of layer-structured Na β″-alumina, a comprehensive investigation combining conductivity and nuclear magnetic resonance (NMR) to study both short-range and long-range ion dynamics has been lacking. In this work, we used a commercially available, highly sintered Na β″-alumina sample to explore Na+ dynamics in detail through GHz conductivity spectroscopy and 23Na nuclear spin relaxation. The two methods provide a rather consistent picture of ion transport. While long-range Na+ transport, reaching a conductivity of 4 mS cm−1 at ambient temperature, is governed by an activation energy of 0.3 eV, short-range motions sense a barrier of 0.13 eV. The Arrhenius pre-factor obtained from characteristic electric relaxation frequencies is consist with that determined from diffusion-induced longitudinal NMR spin-lattice relaxation rates if analyzed with a modified BPP (Bloembergen, Purcell, Pound) spectral density function.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.