Highly Efficient and Precise Rare-Earth Elements Separation and Recycling Process in Molten Salt

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Hang Hua , Kouji Yasuda , Yutaro Norikawa , Toshiyuki Nohira
{"title":"Highly Efficient and Precise Rare-Earth Elements Separation and Recycling Process in Molten Salt","authors":"Hang Hua ,&nbsp;Kouji Yasuda ,&nbsp;Yutaro Norikawa ,&nbsp;Toshiyuki Nohira","doi":"10.1016/j.eng.2022.12.013","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to the worldwide trend towards carbon neutrality, the number of Dy-containing heat-resistant Nd magnets used for wind power generation and electric vehicles is expected to increase exponentially. However, rare earth (RE) elements (especially Dy) are unevenly distributed globally. Therefore, an environmental-friendly recycling method for RE elements with a highly precise separation of Dy and Nd from end-of-life magnets is required to realize a carbon-neutral society. As an alternative to traditional hydrometallurgical RE separation techniques with a high environmental load, we designed a novel, highly efficient, and precise process for the separation and recycling of RE elements from magnet scrap. As a result, over 90% of the RE elements were efficiently extracted from the magnets using MgCl<sub>2</sub> and evaporation loss was selectively suppressed by adding CaF<sub>2</sub>. The extracted RE elements were electrolytically separated based on the formation potential differences of the RE alloys. Nd and Dy metals with purities greater than 90% were estimated to be recovered at rates of 96% and 91%, respectively. Almost all the RE in the scraps could be separated and recycled as RE metals, and the byproducts were easily removed. Thus, this process is expected to be used on an industrial scale to realize a carbon-neutral society.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"45 ","pages":"Pages 165-173"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924005083","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to the worldwide trend towards carbon neutrality, the number of Dy-containing heat-resistant Nd magnets used for wind power generation and electric vehicles is expected to increase exponentially. However, rare earth (RE) elements (especially Dy) are unevenly distributed globally. Therefore, an environmental-friendly recycling method for RE elements with a highly precise separation of Dy and Nd from end-of-life magnets is required to realize a carbon-neutral society. As an alternative to traditional hydrometallurgical RE separation techniques with a high environmental load, we designed a novel, highly efficient, and precise process for the separation and recycling of RE elements from magnet scrap. As a result, over 90% of the RE elements were efficiently extracted from the magnets using MgCl2 and evaporation loss was selectively suppressed by adding CaF2. The extracted RE elements were electrolytically separated based on the formation potential differences of the RE alloys. Nd and Dy metals with purities greater than 90% were estimated to be recovered at rates of 96% and 91%, respectively. Almost all the RE in the scraps could be separated and recycled as RE metals, and the byproducts were easily removed. Thus, this process is expected to be used on an industrial scale to realize a carbon-neutral society.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信