Effects of flow field designs on performance characteristics of vanadium redox flow battery

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Tien-Fu Yang , Yu-Kai Chen , Cong-You Lin , Wei-Mon Yan , Saman Rashidi
{"title":"Effects of flow field designs on performance characteristics of vanadium redox flow battery","authors":"Tien-Fu Yang ,&nbsp;Yu-Kai Chen ,&nbsp;Cong-You Lin ,&nbsp;Wei-Mon Yan ,&nbsp;Saman Rashidi","doi":"10.1016/j.jtice.2025.106043","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Energy storage is a critical area in today's world, despite the shift towards renewable energy sources. The instability and intermittency of energy remain highly challenging. Vanadium redox flow batteries (VRBs), with their flexible design, fast response time, and long cycle life, offer an efficient energy storage solution. Over the past few years, they have been widely applied and developed in large-scale energy storage systems. VRBs offer higher safety compared to lithium batteries. However, previous studies on these batteries have primarily focused on the influence of material usage on battery performance, with the design of flow field structures also being a key factor.</div></div><div><h3>Methods</h3><div>In this study, models of VRBs with interdigitated, parallel, and serpentine (1, 2, 4 channels) flow channels were established. The study analyzes the effects of different flow channels, electrolyte flow rates, and applied current densities on the battery performance. Additionally, it explores the performance of batteries with different geometric configuration parameters of the flow channels and rib width ratios.</div></div><div><h3>Significant Findings</h3><div>The results indicate that the performance of batteries with a serpentine channel (single-channel) surpasses those with serpentine two-channels, serpentine four-channels, interdigitated, and parallel flow channel designs. It was found that the geometry ratio of W<sub>c</sub>:W<sub>r</sub> = 1:2 for flow channels and rib widths is the optimal structural combination among the three geometric configurations. Additionally, it is observed that at low electrolyte flow rates, the flow rate has a significant impact on the performance of these batteries. This phenomenon is caused by the ion diffusion rate inside the electrode being unable to meet the electrochemical reaction rate.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"171 ","pages":"Article 106043"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025000963","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Energy storage is a critical area in today's world, despite the shift towards renewable energy sources. The instability and intermittency of energy remain highly challenging. Vanadium redox flow batteries (VRBs), with their flexible design, fast response time, and long cycle life, offer an efficient energy storage solution. Over the past few years, they have been widely applied and developed in large-scale energy storage systems. VRBs offer higher safety compared to lithium batteries. However, previous studies on these batteries have primarily focused on the influence of material usage on battery performance, with the design of flow field structures also being a key factor.

Methods

In this study, models of VRBs with interdigitated, parallel, and serpentine (1, 2, 4 channels) flow channels were established. The study analyzes the effects of different flow channels, electrolyte flow rates, and applied current densities on the battery performance. Additionally, it explores the performance of batteries with different geometric configuration parameters of the flow channels and rib width ratios.

Significant Findings

The results indicate that the performance of batteries with a serpentine channel (single-channel) surpasses those with serpentine two-channels, serpentine four-channels, interdigitated, and parallel flow channel designs. It was found that the geometry ratio of Wc:Wr = 1:2 for flow channels and rib widths is the optimal structural combination among the three geometric configurations. Additionally, it is observed that at low electrolyte flow rates, the flow rate has a significant impact on the performance of these batteries. This phenomenon is caused by the ion diffusion rate inside the electrode being unable to meet the electrochemical reaction rate.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信