A term structure geostatistical model with correlated residuals: A comparative analysis

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Antonella Congedi, Sandra De Iaco, Donato Posa
{"title":"A term structure geostatistical model with correlated residuals: A comparative analysis","authors":"Antonella Congedi,&nbsp;Sandra De Iaco,&nbsp;Donato Posa","doi":"10.1016/j.spasta.2025.100886","DOIUrl":null,"url":null,"abstract":"<div><div>The growth of financial markets and the emerging derivative instruments require the development of advanced techniques for forecasting the term structure of interest rates. In this context, two significant dimensions, i.e. maturity and time, need to be jointly considered in the modeling procedure. In the literature, the Nelson–Siegel model is commonly used to explain the dependence of the interest rates on maturity and time. However, it cannot be excluded that the residuals obtained from Nelson–Siegel estimates are still correlated. At this purpose, a geostatistical approach is adopted and an innovative modeling solution is provided. Indeed, differently from the existing contributions, this paper proposes a dynamic model for predicting the term structure of spot interest rates, where the joint evolution with respect to time and maturity is considered for both the deterministic and the stochastic parts of the model. The relevance as well as the potentiality of the geostatistical modeling techniques extended to treat observations not strictly referred to a geographic system, has been properly underlined. For comparative reasons, different hypotheses on the random field, utilized to describe the interest rates and its trend component, are also assumed and a comparison among predictive performance of alternative models is discussed.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"67 ","pages":"Article 100886"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000089","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of financial markets and the emerging derivative instruments require the development of advanced techniques for forecasting the term structure of interest rates. In this context, two significant dimensions, i.e. maturity and time, need to be jointly considered in the modeling procedure. In the literature, the Nelson–Siegel model is commonly used to explain the dependence of the interest rates on maturity and time. However, it cannot be excluded that the residuals obtained from Nelson–Siegel estimates are still correlated. At this purpose, a geostatistical approach is adopted and an innovative modeling solution is provided. Indeed, differently from the existing contributions, this paper proposes a dynamic model for predicting the term structure of spot interest rates, where the joint evolution with respect to time and maturity is considered for both the deterministic and the stochastic parts of the model. The relevance as well as the potentiality of the geostatistical modeling techniques extended to treat observations not strictly referred to a geographic system, has been properly underlined. For comparative reasons, different hypotheses on the random field, utilized to describe the interest rates and its trend component, are also assumed and a comparison among predictive performance of alternative models is discussed.
具有相关残差的期限结构地质统计模型:比较分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信