Jian Chen , Jie Zhao , Xi Shen , Dewei Mo , Cheng-Wei Qiu , Qiwen Zhan
{"title":"Orbit–Orbit Interaction in Spatiotemporal Optical Vortex","authors":"Jian Chen , Jie Zhao , Xi Shen , Dewei Mo , Cheng-Wei Qiu , Qiwen Zhan","doi":"10.1016/j.eng.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>While spin–orbit interaction has been extensively studied, few investigations have reported on the interaction between orbital angular momenta (OAMs). In this work, we study a new type of orbit–orbit coupling between the longitudinal OAM and the transverse OAM carried by a three-dimensional (3D) spatiotemporal optical vortex (STOV) in the process of tight focusing. The 3D STOV possesses orthogonal OAMs in the <em>x</em>–<em>y</em>, <em>t</em>–<em>x</em>, and <em>y</em>–<em>t</em> planes, and is preconditioned to overcome the spatiotemporal astigmatism effect. <em>x, y,</em> and <em>t</em> are the axes in the spatiotemporal domain. The corresponding focused wavepacket is calculated by employing the Debye diffraction theory, showing that a phase singularity ring is generated by the interactions among the transverse and longitudinal vortices in the highly confined STOV. The Fourier-transform decomposition of the Debye integral is employed to analyze the mechanism of the orbit–orbit interaction. This is the first revelation of coupling between the longitudinal OAM and the transverse OAM, paving the way for potential applications in optical trapping, laser machining, nonlinear light–matter interactions, and more.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"45 ","pages":"Pages 44-51"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924005782","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While spin–orbit interaction has been extensively studied, few investigations have reported on the interaction between orbital angular momenta (OAMs). In this work, we study a new type of orbit–orbit coupling between the longitudinal OAM and the transverse OAM carried by a three-dimensional (3D) spatiotemporal optical vortex (STOV) in the process of tight focusing. The 3D STOV possesses orthogonal OAMs in the x–y, t–x, and y–t planes, and is preconditioned to overcome the spatiotemporal astigmatism effect. x, y, and t are the axes in the spatiotemporal domain. The corresponding focused wavepacket is calculated by employing the Debye diffraction theory, showing that a phase singularity ring is generated by the interactions among the transverse and longitudinal vortices in the highly confined STOV. The Fourier-transform decomposition of the Debye integral is employed to analyze the mechanism of the orbit–orbit interaction. This is the first revelation of coupling between the longitudinal OAM and the transverse OAM, paving the way for potential applications in optical trapping, laser machining, nonlinear light–matter interactions, and more.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.