Hanqing Cai , Liangliang Gu , Haifeng Hu , Qiwen Zhan
{"title":"Enhancement Methods for Chiral Optical Signals by Tailoring Optical Fields and Nanostructures","authors":"Hanqing Cai , Liangliang Gu , Haifeng Hu , Qiwen Zhan","doi":"10.1016/j.eng.2024.12.022","DOIUrl":null,"url":null,"abstract":"<div><div>The unique property of chirality is widely used in various fields. In the past few decades, a great deal of research has been conducted on the interactions between light and matter, resulting in significant technical advancements in the precise manipulation of light field wavefronts. In this review, which focuses on current chiral optics research, we introduce the fundamental theory of chirality and highlight the latest achievements in enhancing chiral signals through artificial nano-manufacturing technology, with a particular focus on mechanisms such as light scattering and Mie resonance used to amplify chiral signals. By providing an overview of enhanced chiral signals, this review aims to provide researchers with an in-depth understanding of chiral phenomena and its versatile applications in various domains.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"45 ","pages":"Pages 25-43"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924007392","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The unique property of chirality is widely used in various fields. In the past few decades, a great deal of research has been conducted on the interactions between light and matter, resulting in significant technical advancements in the precise manipulation of light field wavefronts. In this review, which focuses on current chiral optics research, we introduce the fundamental theory of chirality and highlight the latest achievements in enhancing chiral signals through artificial nano-manufacturing technology, with a particular focus on mechanisms such as light scattering and Mie resonance used to amplify chiral signals. By providing an overview of enhanced chiral signals, this review aims to provide researchers with an in-depth understanding of chiral phenomena and its versatile applications in various domains.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.