Rong Lin , Jin Yao , Zhihui Wang , Che Ting Chan , Din Ping Tsai
{"title":"Nonlinear Meta-Devices: From Plasmonic to Dielectric","authors":"Rong Lin , Jin Yao , Zhihui Wang , Che Ting Chan , Din Ping Tsai","doi":"10.1016/j.eng.2024.11.021","DOIUrl":null,"url":null,"abstract":"<div><div>Meta-devices have significantly revitalized the study of nonlinear optical phenomena. At the nanoscale, the detrimental effects of phase mismatching between fundamental and harmonic waves can be substantially reduced. This review analyzes the theoretical frameworks of how plasmonic and dielectric materials induce nonlinear optical properties. Plasmonic and dielectric nonlinear meta-devices that can excite strong resonant modes for efficiency enhancement are explored. We outline different strategies designed to shape the radiation pattern in order to increase the collection capability of nonlinear signals emitted from meta-devices. In addition, we discuss how nonlinear phase manipulation in meta-devices can integrate the benefits of efficiency enhancement and radiation shaping, not only boosting the energy density of the nonlinear signal but also facilitating a wide range of applications. Finally, potential research directions within this field are discussed.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"45 ","pages":"Pages 15-24"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924006738","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Meta-devices have significantly revitalized the study of nonlinear optical phenomena. At the nanoscale, the detrimental effects of phase mismatching between fundamental and harmonic waves can be substantially reduced. This review analyzes the theoretical frameworks of how plasmonic and dielectric materials induce nonlinear optical properties. Plasmonic and dielectric nonlinear meta-devices that can excite strong resonant modes for efficiency enhancement are explored. We outline different strategies designed to shape the radiation pattern in order to increase the collection capability of nonlinear signals emitted from meta-devices. In addition, we discuss how nonlinear phase manipulation in meta-devices can integrate the benefits of efficiency enhancement and radiation shaping, not only boosting the energy density of the nonlinear signal but also facilitating a wide range of applications. Finally, potential research directions within this field are discussed.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.