Emile Salomon Massima Mouele , Htet Htet Kyaw , Myo Tay Zar Myint , Mohammed Al-Abri , Mohammed A.Al Belushi , Sergey Dobretsov , Jean-Luc Mukaba , Alechine Emmanuel Ameh , Leslie F. Petrik , Francis Ntumba Muya , Bernard Bladergroen , Kingsley Ehi Ebomah , Mike Ojemaye , Anthony Ifeanyi Okoh , Omobola O. Okoh
{"title":"Multifunctional metal oxides synthesized via a solvo-hydrothermal process for photocatalytic degradation of organic dye and bacteria in wastewater","authors":"Emile Salomon Massima Mouele , Htet Htet Kyaw , Myo Tay Zar Myint , Mohammed Al-Abri , Mohammed A.Al Belushi , Sergey Dobretsov , Jean-Luc Mukaba , Alechine Emmanuel Ameh , Leslie F. Petrik , Francis Ntumba Muya , Bernard Bladergroen , Kingsley Ehi Ebomah , Mike Ojemaye , Anthony Ifeanyi Okoh , Omobola O. Okoh","doi":"10.1016/j.chphi.2025.100856","DOIUrl":null,"url":null,"abstract":"<div><div>The persistent occurrence of textile industrial dyestuff in water bodies has continuously threatened aquatic life and public health, requiring effective remediation. This study explores the solvo-hydrothermal synthesis of Ag<sub>2</sub>O, Fe<sub>2</sub>O<sub>3</sub>, AgFe<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, Ag-TiO<sub>2</sub>, Fe-TiO<sub>2</sub>, and AgFe-TiO<sub>2</sub> catalysts. Various techniques, including SEM-EDS, FTIR, XRD, BET, TGA, and XPS characterized the as-prepared metal oxide (MO) catalysts. The multi-functionality of the catalysts was assessed on the degradation of Congo red dye and the inhibition of gram-positive <em>B. subtilis</em> in simulated wastewater. SEM analysis shows that MOs mostly appeared in granular morphologies except for Fe₂O₃, which comprised elongated grains, and showed that both Ag and Fe were successfully doped into the TiO₂ framework. The XRD survey revealed that Fe₂O₃ and TiO₂ were abundant in hematite and anatase phases. The BET findings indicated that the MOs are fine mesoporous particles, with TiO₂ showing the highest surface area of 83 m²/g, followed by 63, 28.27, and 24.03 m²/g for AgFe-TiO₂, AgFe₂O₃, and Ag-TiO₂, respectively. The antibacterial assays showed that Ag-TiO₂ and AgFe₂O₃ inhibited 58 % and 64 % of <em>B. subtilis</em>, correspondingly. The highest removals 98 and 99.99 % of Congo red (CR) dye were achieved with AgFe₂O₃ and TiO₂ after 5 h of irradiation time. At optimum conditions, AgFe₂O₃ and TiO₂ performed well and reached complete degradation up to 3 cycles. The outcomes of this study show that the multifunctional metal oxides produced via the solvo-hydrothermal method are thermally stable and can effectively be used for the simultaneous degradation of organic dye and disinfection of bacterial-polluted water.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100856"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The persistent occurrence of textile industrial dyestuff in water bodies has continuously threatened aquatic life and public health, requiring effective remediation. This study explores the solvo-hydrothermal synthesis of Ag2O, Fe2O3, AgFe2O3, TiO2, Ag-TiO2, Fe-TiO2, and AgFe-TiO2 catalysts. Various techniques, including SEM-EDS, FTIR, XRD, BET, TGA, and XPS characterized the as-prepared metal oxide (MO) catalysts. The multi-functionality of the catalysts was assessed on the degradation of Congo red dye and the inhibition of gram-positive B. subtilis in simulated wastewater. SEM analysis shows that MOs mostly appeared in granular morphologies except for Fe₂O₃, which comprised elongated grains, and showed that both Ag and Fe were successfully doped into the TiO₂ framework. The XRD survey revealed that Fe₂O₃ and TiO₂ were abundant in hematite and anatase phases. The BET findings indicated that the MOs are fine mesoporous particles, with TiO₂ showing the highest surface area of 83 m²/g, followed by 63, 28.27, and 24.03 m²/g for AgFe-TiO₂, AgFe₂O₃, and Ag-TiO₂, respectively. The antibacterial assays showed that Ag-TiO₂ and AgFe₂O₃ inhibited 58 % and 64 % of B. subtilis, correspondingly. The highest removals 98 and 99.99 % of Congo red (CR) dye were achieved with AgFe₂O₃ and TiO₂ after 5 h of irradiation time. At optimum conditions, AgFe₂O₃ and TiO₂ performed well and reached complete degradation up to 3 cycles. The outcomes of this study show that the multifunctional metal oxides produced via the solvo-hydrothermal method are thermally stable and can effectively be used for the simultaneous degradation of organic dye and disinfection of bacterial-polluted water.