Freezing behavior of ionic solutions within calcium silicate hydrate gel pores

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Songyue Chai , Jianyu Song , Muhan Wang , Yue Zhang , Bo-Tao Huang , Bing Yin , Pan Wang , Dongshuai Hou
{"title":"Freezing behavior of ionic solutions within calcium silicate hydrate gel pores","authors":"Songyue Chai ,&nbsp;Jianyu Song ,&nbsp;Muhan Wang ,&nbsp;Yue Zhang ,&nbsp;Bo-Tao Huang ,&nbsp;Bing Yin ,&nbsp;Pan Wang ,&nbsp;Dongshuai Hou","doi":"10.1016/j.cemconres.2025.107841","DOIUrl":null,"url":null,"abstract":"<div><div>Salt-frost damage is a crucial issue affecting the durability of concrete structures, however, the freezing behavior and micro-mechanisms of ionic solutions within cementitious material gel pores remain unclear, which is not conducive to optimizing cold-resistant concrete design from the bottom up. In this study, the models of saturated calcium silicate hydrate (C-S-H) gel pores containing NaCl, Na<sub>2</sub>SO<sub>4</sub>, and aqueous solution, respectively, were constructed by molecular dynamics (MD) simulation. We investigated the freezing behavior of ionic solutions within the gel pores at 230 K. The freezing process of models exhibited a distinct periodic pattern. Na<sup>+</sup> and Cl<sup>−</sup> delayed the freezing of pore water, while <span><math><msubsup><mi>SO</mi><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></math></span> accumulated near the freezing front, significantly hindering freezing progression. The freezing resulted in two types of nano brine pockets in the NaCl model. This work provides new molecular insights into salt freezing in cementitious materials and informs the design of cold-resistant concrete at the molecular scale.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"192 ","pages":"Article 107841"},"PeriodicalIF":10.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000602","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Salt-frost damage is a crucial issue affecting the durability of concrete structures, however, the freezing behavior and micro-mechanisms of ionic solutions within cementitious material gel pores remain unclear, which is not conducive to optimizing cold-resistant concrete design from the bottom up. In this study, the models of saturated calcium silicate hydrate (C-S-H) gel pores containing NaCl, Na2SO4, and aqueous solution, respectively, were constructed by molecular dynamics (MD) simulation. We investigated the freezing behavior of ionic solutions within the gel pores at 230 K. The freezing process of models exhibited a distinct periodic pattern. Na+ and Cl delayed the freezing of pore water, while SO42 accumulated near the freezing front, significantly hindering freezing progression. The freezing resulted in two types of nano brine pockets in the NaCl model. This work provides new molecular insights into salt freezing in cementitious materials and informs the design of cold-resistant concrete at the molecular scale.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信