Enhancing Mining Exploration through Geostatistical Analysis of Seismic Tomographies at Different Scales: Improving Low-Resolution Data by High-Resolution Results

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
José Joaquín González, Nadia Mery, Felipe Navarro, Gonzalo Díaz, Diana Comte, Sergio Pichott
{"title":"Enhancing Mining Exploration through Geostatistical Analysis of Seismic Tomographies at Different Scales: Improving Low-Resolution Data by High-Resolution Results","authors":"José Joaquín González, Nadia Mery, Felipe Navarro, Gonzalo Díaz, Diana Comte, Sergio Pichott","doi":"10.1007/s11053-025-10472-3","DOIUrl":null,"url":null,"abstract":"<p>In the context of mining exploration, local earthquake tomography serves as a valuable complementary tool, applicable across varying scales from greenfield to brownfield projects. Nevertheless, interpreting body-wave velocity anomalies within tomographies poses a significant challenge, which largely depends on the expertise of the analyst and the availability of information. Addressing this challenge, this paper proposes a geostatistical analysis to effectively compare and enhance the information extracted from tomographies ranging from lower to higher resolutions. The data utilized in this study correspond to the tomographic inversion values of Mantos Rojos (MR) and Radomiro Tomic (RT) porphyry copper deposits situated within the Chuquicamata District in northern Chile. MR has a resolution of 2 × 2 km<sup>2</sup>, comparatively lower than RT’s resolution of 1 × 1 km<sup>2</sup>, yet both share the same spatial zone. This study evaluated the discernment capabilities of lower-resolution tomography (MR) in comparison to its higher-resolution counterpart (RT) using turning bands simulation. The simulated Vp/Vs values of MR were compared against RT seismic tomography data. Visual validation revealed that simulated Vp/Vs values from P- and S-wave velocity values of MR can identify the low Vp/Vs anomalies (&lt; 1.7). Moreover, spatial analysis compared the experimental variograms for MR realizations and for RT values in preferential directions for Vp/Vs ratios, finding a correspondence between both spatial tools. Finally, geological validation was carried out by comparing the simulation results with geological maps of the study area and copper grades obtained through drilling campaigns provided by CODELCO, where spatial patterns indicative of mineralization and larger-scale geological features like the West Fault were identified. Our research has practical implications because, through geostatistical simulations, the grid dimensions of seismic tomography of MR can be reduced and still identify low Vp/Vs anomalies within the area of study, being consistent with the lower-resolution validation grid of RT. Our findings demonstrate the efficacy of geostatistical methods in enhancing exploration decision-making by providing insights into subsurface geological features and their relationship to mineralization. This approach not only improves the efficiency and success rate of mineral exploration projects but also minimizes environmental impact by allowing for more targeted and informed exploration activities.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"33 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-025-10472-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of mining exploration, local earthquake tomography serves as a valuable complementary tool, applicable across varying scales from greenfield to brownfield projects. Nevertheless, interpreting body-wave velocity anomalies within tomographies poses a significant challenge, which largely depends on the expertise of the analyst and the availability of information. Addressing this challenge, this paper proposes a geostatistical analysis to effectively compare and enhance the information extracted from tomographies ranging from lower to higher resolutions. The data utilized in this study correspond to the tomographic inversion values of Mantos Rojos (MR) and Radomiro Tomic (RT) porphyry copper deposits situated within the Chuquicamata District in northern Chile. MR has a resolution of 2 × 2 km2, comparatively lower than RT’s resolution of 1 × 1 km2, yet both share the same spatial zone. This study evaluated the discernment capabilities of lower-resolution tomography (MR) in comparison to its higher-resolution counterpart (RT) using turning bands simulation. The simulated Vp/Vs values of MR were compared against RT seismic tomography data. Visual validation revealed that simulated Vp/Vs values from P- and S-wave velocity values of MR can identify the low Vp/Vs anomalies (< 1.7). Moreover, spatial analysis compared the experimental variograms for MR realizations and for RT values in preferential directions for Vp/Vs ratios, finding a correspondence between both spatial tools. Finally, geological validation was carried out by comparing the simulation results with geological maps of the study area and copper grades obtained through drilling campaigns provided by CODELCO, where spatial patterns indicative of mineralization and larger-scale geological features like the West Fault were identified. Our research has practical implications because, through geostatistical simulations, the grid dimensions of seismic tomography of MR can be reduced and still identify low Vp/Vs anomalies within the area of study, being consistent with the lower-resolution validation grid of RT. Our findings demonstrate the efficacy of geostatistical methods in enhancing exploration decision-making by providing insights into subsurface geological features and their relationship to mineralization. This approach not only improves the efficiency and success rate of mineral exploration projects but also minimizes environmental impact by allowing for more targeted and informed exploration activities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信