The transcription factor SRF regulates MERVL retrotransposons and gene expression during zygotic genome activation

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Clara Hermant, Carlos Michel Mourra-Díaz, Marlies E. Oomen, Luis Altamirano-Pacheco, Mrinmoy Pal, Tsunetoshi Nakatani, Maria-Elena Torres-Padilla
{"title":"The transcription factor SRF regulates MERVL retrotransposons and gene expression during zygotic genome activation","authors":"Clara Hermant, Carlos Michel Mourra-Díaz, Marlies E. Oomen, Luis Altamirano-Pacheco, Mrinmoy Pal, Tsunetoshi Nakatani, Maria-Elena Torres-Padilla","doi":"10.1101/gad.352270.124","DOIUrl":null,"url":null,"abstract":"The regulatory circuitry of cell-specific transcriptional programs is thought to be influenced by transposable elements (TEs), whereby TEs serve as raw material for the diversification and genome-wide distribution of genetic elements that contain <em>cis</em>-regulatory activity. However, the transcriptional activators of TEs in relevant physiological contexts are largely unknown. Here, we undertook an evolutionary approach to identify regulators of two main families of MERVL, a major regulator of transcription during early mouse development. Using a combination of phyloregulatory, transcriptomic, and loss-of-function approaches, we demonstrate that SRF is a novel regulator of MERVL and embryonic transcription during zygotic genome activation. By resolving the phylogenetic history of two major MERVL families, we delineate the evolutionary acquisition of SRF and DUX binding sites and show that the acquisition of the SRF site precedes that of DUX. SRF contributes to embryonic transcription through the regulation of MERVLs, which in turn serve as promoters for host genes. Our work identifies new transcriptional regulators and TEs that shape the gene expression programs in early embryos and highlights the process of TE domestication via the sequential acquisition of transcription factor binding sites and coevolution with the host.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"52 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.352270.124","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The regulatory circuitry of cell-specific transcriptional programs is thought to be influenced by transposable elements (TEs), whereby TEs serve as raw material for the diversification and genome-wide distribution of genetic elements that contain cis-regulatory activity. However, the transcriptional activators of TEs in relevant physiological contexts are largely unknown. Here, we undertook an evolutionary approach to identify regulators of two main families of MERVL, a major regulator of transcription during early mouse development. Using a combination of phyloregulatory, transcriptomic, and loss-of-function approaches, we demonstrate that SRF is a novel regulator of MERVL and embryonic transcription during zygotic genome activation. By resolving the phylogenetic history of two major MERVL families, we delineate the evolutionary acquisition of SRF and DUX binding sites and show that the acquisition of the SRF site precedes that of DUX. SRF contributes to embryonic transcription through the regulation of MERVLs, which in turn serve as promoters for host genes. Our work identifies new transcriptional regulators and TEs that shape the gene expression programs in early embryos and highlights the process of TE domestication via the sequential acquisition of transcription factor binding sites and coevolution with the host.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & development
Genes & development 生物-发育生物学
CiteScore
17.50
自引率
1.90%
发文量
71
审稿时长
3-6 weeks
期刊介绍: Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers. Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信