Chengran Yang, Marta Florido-Llinàs, Mile Gu, Thomas J. Elliott
{"title":"Dimension reduction in quantum sampling of stochastic processes","authors":"Chengran Yang, Marta Florido-Llinàs, Mile Gu, Thomas J. Elliott","doi":"10.1038/s41534-025-00978-2","DOIUrl":null,"url":null,"abstract":"<p>Quantum technologies offer a promising route to the efficient sampling and analysis of stochastic processes, with potential applications across the sciences. Such quantum advantages rely on the preparation of a quantum sample state of the stochastic process, which requires a memory system to propagate correlations between the past and future of the process. Here, we introduce a method of lossy quantum dimension reduction that allows this memory to be compressed, not just beyond classical limits, but also beyond current state-of-the-art quantum stochastic sampling approaches. We investigate the trade-off between the saving in memory resources from this compression, and the distortion it introduces. We show that our approach can be highly effective in low distortion compression of both Markovian and strongly non-Markovian processes alike. We further discuss the application of our results to quantum stochastic modelling more broadly.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"26 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00978-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum technologies offer a promising route to the efficient sampling and analysis of stochastic processes, with potential applications across the sciences. Such quantum advantages rely on the preparation of a quantum sample state of the stochastic process, which requires a memory system to propagate correlations between the past and future of the process. Here, we introduce a method of lossy quantum dimension reduction that allows this memory to be compressed, not just beyond classical limits, but also beyond current state-of-the-art quantum stochastic sampling approaches. We investigate the trade-off between the saving in memory resources from this compression, and the distortion it introduces. We show that our approach can be highly effective in low distortion compression of both Markovian and strongly non-Markovian processes alike. We further discuss the application of our results to quantum stochastic modelling more broadly.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.