Mona Schatke, Lena Ulber, Christoph Kämpfer, Christoph von Redwitz
{"title":"Estimation of weed distribution for site-specific weed management—can Gaussian copula reduce the smoothing effect?","authors":"Mona Schatke, Lena Ulber, Christoph Kämpfer, Christoph von Redwitz","doi":"10.1007/s11119-025-10232-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Creating spatial weed distribution maps as the basis for site-specific weed management (SSWM) requires determining the occurrence and densities of weeds at georeferenced grid points. To achieve a field-wide distribution map, the weed distribution between the sampling points needs to be predicted. The aim of this study was to determine the best combination of grid sampling design and spatial interpolation technique to improve prediction accuracy. Gaussian copula as alternative method was tested to overcome challenges associated with interpolating weed densities such as smoothing effects.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The quality of weed distribution maps created using combinations of different sampling grids and interpolation methods was assessed: Inverse Distance Weighting, different geostatistical approaches, and Nearest Neighbor Interpolation. For this comparison, the weed distribution and densities in four fields were assessed using three sampling grids with different resolutions and arrangements: Random vs. regular arrangement of 40 grid points, and a combination of both grid types (fine grid).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The best prediction of weed distribution was achieved with the Kriging interpolation models based on weed data sampled on the fine grid. In contrast, the lowest performance was observed using the regular grid and the Nearest Neighbor Interpolation. A patchy distribution of weeds did not affect the prediction quality.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Using the Gaussian copula kriging did not result in a reduction of the smoothing effect, which still represents a challenge when employing spatial interpolation methods for SSWM. However, using a randomly distributed raster with a fine resolution could further optimize the precision of weed distribution maps.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"28 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10232-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Creating spatial weed distribution maps as the basis for site-specific weed management (SSWM) requires determining the occurrence and densities of weeds at georeferenced grid points. To achieve a field-wide distribution map, the weed distribution between the sampling points needs to be predicted. The aim of this study was to determine the best combination of grid sampling design and spatial interpolation technique to improve prediction accuracy. Gaussian copula as alternative method was tested to overcome challenges associated with interpolating weed densities such as smoothing effects.
Methods
The quality of weed distribution maps created using combinations of different sampling grids and interpolation methods was assessed: Inverse Distance Weighting, different geostatistical approaches, and Nearest Neighbor Interpolation. For this comparison, the weed distribution and densities in four fields were assessed using three sampling grids with different resolutions and arrangements: Random vs. regular arrangement of 40 grid points, and a combination of both grid types (fine grid).
Results
The best prediction of weed distribution was achieved with the Kriging interpolation models based on weed data sampled on the fine grid. In contrast, the lowest performance was observed using the regular grid and the Nearest Neighbor Interpolation. A patchy distribution of weeds did not affect the prediction quality.
Conclusion
Using the Gaussian copula kriging did not result in a reduction of the smoothing effect, which still represents a challenge when employing spatial interpolation methods for SSWM. However, using a randomly distributed raster with a fine resolution could further optimize the precision of weed distribution maps.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.