Estimation of weed distribution for site-specific weed management—can Gaussian copula reduce the smoothing effect?

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Mona Schatke, Lena Ulber, Christoph Kämpfer, Christoph von Redwitz
{"title":"Estimation of weed distribution for site-specific weed management—can Gaussian copula reduce the smoothing effect?","authors":"Mona Schatke, Lena Ulber, Christoph Kämpfer, Christoph von Redwitz","doi":"10.1007/s11119-025-10232-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Creating spatial weed distribution maps as the basis for site-specific weed management (SSWM) requires determining the occurrence and densities of weeds at georeferenced grid points. To achieve a field-wide distribution map, the weed distribution between the sampling points needs to be predicted. The aim of this study was to determine the best combination of grid sampling design and spatial interpolation technique to improve prediction accuracy. Gaussian copula as alternative method was tested to overcome challenges associated with interpolating weed densities such as smoothing effects.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The quality of weed distribution maps created using combinations of different sampling grids and interpolation methods was assessed: Inverse Distance Weighting, different geostatistical approaches, and Nearest Neighbor Interpolation. For this comparison, the weed distribution and densities in four fields were assessed using three sampling grids with different resolutions and arrangements: Random vs. regular arrangement of 40 grid points, and a combination of both grid types (fine grid).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The best prediction of weed distribution was achieved with the Kriging interpolation models based on weed data sampled on the fine grid. In contrast, the lowest performance was observed using the regular grid and the Nearest Neighbor Interpolation. A patchy distribution of weeds did not affect the prediction quality.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Using the Gaussian copula kriging did not result in a reduction of the smoothing effect, which still represents a challenge when employing spatial interpolation methods for SSWM. However, using a randomly distributed raster with a fine resolution could further optimize the precision of weed distribution maps.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"28 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10232-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Creating spatial weed distribution maps as the basis for site-specific weed management (SSWM) requires determining the occurrence and densities of weeds at georeferenced grid points. To achieve a field-wide distribution map, the weed distribution between the sampling points needs to be predicted. The aim of this study was to determine the best combination of grid sampling design and spatial interpolation technique to improve prediction accuracy. Gaussian copula as alternative method was tested to overcome challenges associated with interpolating weed densities such as smoothing effects.

Methods

The quality of weed distribution maps created using combinations of different sampling grids and interpolation methods was assessed: Inverse Distance Weighting, different geostatistical approaches, and Nearest Neighbor Interpolation. For this comparison, the weed distribution and densities in four fields were assessed using three sampling grids with different resolutions and arrangements: Random vs. regular arrangement of 40 grid points, and a combination of both grid types (fine grid).

Results

The best prediction of weed distribution was achieved with the Kriging interpolation models based on weed data sampled on the fine grid. In contrast, the lowest performance was observed using the regular grid and the Nearest Neighbor Interpolation. A patchy distribution of weeds did not affect the prediction quality.

Conclusion

Using the Gaussian copula kriging did not result in a reduction of the smoothing effect, which still represents a challenge when employing spatial interpolation methods for SSWM. However, using a randomly distributed raster with a fine resolution could further optimize the precision of weed distribution maps.

估计杂草分布以进行特定地点的杂草管理--高斯协约能减少平滑效应吗?
目的:通过确定地理参考网格点的杂草发生和密度,绘制空间杂草分布图,作为特定地点杂草管理(SSWM)的基础。为了获得全田范围的杂草分布图,需要预测采样点之间的杂草分布。本研究的目的是确定网格采样设计和空间插值技术的最佳组合,以提高预测精度。高斯copula作为一种替代方法进行了测试,以克服与插值杂草密度相关的挑战,如平滑效果。方法采用反距离加权法、不同地统计学方法和最近邻插值法,对不同采样网格和插值法组合绘制的杂草分布图进行质量评价。为了进行比较,采用3种不同分辨率和排列的采样网格:随机与规则排列的40个网格点,以及两种网格类型的组合(细网格),对4个农田的杂草分布和密度进行了评估。结果基于细网格采样数据的Kriging插值模型对杂草分布的预测效果最好。相比之下,使用规则网格和最近邻插值的性能最低。杂草的斑驳分布不影响预测质量。结论使用高斯copula kriging并不会导致平滑效果的降低,这在使用空间插值方法进行SSWM时仍然是一个挑战。而采用随机分布的栅格,具有较好的分辨率,可以进一步优化杂草分布图的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信