{"title":"Ion Sieving in Two-Dimensional Membranes from First Principles","authors":"Nicéphore Bonnet, Nicola Marzari","doi":"10.1021/acsnano.4c13575","DOIUrl":null,"url":null,"abstract":"A first-principles approach for calculating ion separation in solution through two-dimensional (2D) membranes is proposed and applied. Ionic energy profiles across the membrane are obtained first, where solvation effects are simulated explicitly with machine-learning molecular dynamics, electrostatic corrections are applied to remove finite-size capacitive effects, and a mean-field treatment of the charging of the electrochemical double layer is used. Entropic contributions are assessed analytically and validated against thermodynamic integration. Ionic separations are then inferred through a microkinetic model of the filtration process, accounting for steady-state charge separation effects across the membrane. The approach is applied to Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> sieving through a crown-ether functionalized graphene membrane, with a case study of the mechanisms for a highly selective and efficient extraction of lithium from aqueous solutions.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"54 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13575","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A first-principles approach for calculating ion separation in solution through two-dimensional (2D) membranes is proposed and applied. Ionic energy profiles across the membrane are obtained first, where solvation effects are simulated explicitly with machine-learning molecular dynamics, electrostatic corrections are applied to remove finite-size capacitive effects, and a mean-field treatment of the charging of the electrochemical double layer is used. Entropic contributions are assessed analytically and validated against thermodynamic integration. Ionic separations are then inferred through a microkinetic model of the filtration process, accounting for steady-state charge separation effects across the membrane. The approach is applied to Li+, Na+, K+ sieving through a crown-ether functionalized graphene membrane, with a case study of the mechanisms for a highly selective and efficient extraction of lithium from aqueous solutions.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.