Unravelling the Oxygen Evolution Mechanism of Lithium-Rich Antifluorite Prelithiation Agent Based on Anionic Oxidation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuanlong Zhu, Ruoyu Xu, Yichun Zheng, Yilong Chen, Jianhua Yin, Jiyuan Xue, Baodan Zhang, Li Li, Guifan Zeng, Haiyan Luo, Xiaohong Wu, Kang Zhang, Zixin Wu, Siyu Yang, Shuoyu Li, Yang Sun, Datong Zhang, Yu Qiao, Shi-Gang Sun
{"title":"Unravelling the Oxygen Evolution Mechanism of Lithium-Rich Antifluorite Prelithiation Agent Based on Anionic Oxidation","authors":"Yuanlong Zhu, Ruoyu Xu, Yichun Zheng, Yilong Chen, Jianhua Yin, Jiyuan Xue, Baodan Zhang, Li Li, Guifan Zeng, Haiyan Luo, Xiaohong Wu, Kang Zhang, Zixin Wu, Siyu Yang, Shuoyu Li, Yang Sun, Datong Zhang, Yu Qiao, Shi-Gang Sun","doi":"10.1002/anie.202502126","DOIUrl":null,"url":null,"abstract":"Developing sacrificial cathode prelithiation technology to compensate for irreversible lithium loss is crucial for enhancing the energy density of lithium-ion batteries. Antifluorite Li-rich Li5FeO4 (LFO) is a promising prelithiation agent due to its high theoretical capacity (867 mAh/g) and superior decomposition dynamic (< 4.0 V versus. Li/Li+). However, the oxygen evolution mechanism in LFO remains unclear, limiting its application as an ideal prelithiation agent. Herein, we systematically track the full lifecycle oxygen footprint in LFO lattice, electrolyte and solid electrolyte interface (SEI). We demonstrate the lattice mismatch induced by the quasi-disorder rocksalt intermediate phase can activate the lattice oxygen oxidation promoting the dimerization to O2. Specifically, in contrast to the O-O dimers formed within typical anionic-redox active cathodes, the oxidation of lattice oxygen in LFO generates O- stabilized in Li6-O configuration. Significantly, a pair of edge-sharing Li6-O configurations transforms into a superoxo dimer, which further evolves into O2 via a ligand-to-metal charge transfer process. Moreover, we demonstrate that nucleophilic intermediates threaten the stability of electrolytes and SEI. Leveraging the insights above, we offer comprehensive perspectives for the modification of ideal prelithiation agents.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"44 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202502126","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing sacrificial cathode prelithiation technology to compensate for irreversible lithium loss is crucial for enhancing the energy density of lithium-ion batteries. Antifluorite Li-rich Li5FeO4 (LFO) is a promising prelithiation agent due to its high theoretical capacity (867 mAh/g) and superior decomposition dynamic (< 4.0 V versus. Li/Li+). However, the oxygen evolution mechanism in LFO remains unclear, limiting its application as an ideal prelithiation agent. Herein, we systematically track the full lifecycle oxygen footprint in LFO lattice, electrolyte and solid electrolyte interface (SEI). We demonstrate the lattice mismatch induced by the quasi-disorder rocksalt intermediate phase can activate the lattice oxygen oxidation promoting the dimerization to O2. Specifically, in contrast to the O-O dimers formed within typical anionic-redox active cathodes, the oxidation of lattice oxygen in LFO generates O- stabilized in Li6-O configuration. Significantly, a pair of edge-sharing Li6-O configurations transforms into a superoxo dimer, which further evolves into O2 via a ligand-to-metal charge transfer process. Moreover, we demonstrate that nucleophilic intermediates threaten the stability of electrolytes and SEI. Leveraging the insights above, we offer comprehensive perspectives for the modification of ideal prelithiation agents.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信