Surface Enhanced Raman Scattering for Biomolecular Sensing in Human Healthcare Monitoring

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-02-27 DOI:10.1021/acsnano.4c15877
Stacey Laing, Sian Sloan-Dennison, Karen Faulds, Duncan Graham
{"title":"Surface Enhanced Raman Scattering for Biomolecular Sensing in Human Healthcare Monitoring","authors":"Stacey Laing, Sian Sloan-Dennison, Karen Faulds, Duncan Graham","doi":"10.1021/acsnano.4c15877","DOIUrl":null,"url":null,"abstract":"Since the 1980s, surface enhanced Raman scattering (SERS) has been used for the rapid and sensitive detection of biomolecules. Whether a label-free or labeled assay is adopted, SERS has demonstrated low limits of detection in a variety of biological matrices. However, SERS analysis has been confined to the laboratory due to several reasons such as reproducibility and scalability, both of which have been discussed at length in the literature. Another possible issue with the lack of widespread adoption of SERS is that its application in point of use (POU) testing is only now being fully explored due to the advent of portable Raman spectrometers. Researchers are now investigating how SERS can be used as the output on several POU platforms such as lateral flow assays, wearable sensors, and in volatile organic compound (VOC) detection for human healthcare monitoring, with favorable results that rival the gold standard approaches. Another obstacle that SERS faces is the interpretation of the wealth of information obtained from the platform. To combat this, machine learning is being explored and has been shown to provide quick and accurate analysis of the generated data, leading to sensitive detection and discrimination of many clinically relevant biomolecules. This review will discuss the advancements of SERS combined with POU testing and the strength that machine learning can bring to the analysis to produce a powerful combined platform for human healthcare monitoring.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"210 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15877","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Since the 1980s, surface enhanced Raman scattering (SERS) has been used for the rapid and sensitive detection of biomolecules. Whether a label-free or labeled assay is adopted, SERS has demonstrated low limits of detection in a variety of biological matrices. However, SERS analysis has been confined to the laboratory due to several reasons such as reproducibility and scalability, both of which have been discussed at length in the literature. Another possible issue with the lack of widespread adoption of SERS is that its application in point of use (POU) testing is only now being fully explored due to the advent of portable Raman spectrometers. Researchers are now investigating how SERS can be used as the output on several POU platforms such as lateral flow assays, wearable sensors, and in volatile organic compound (VOC) detection for human healthcare monitoring, with favorable results that rival the gold standard approaches. Another obstacle that SERS faces is the interpretation of the wealth of information obtained from the platform. To combat this, machine learning is being explored and has been shown to provide quick and accurate analysis of the generated data, leading to sensitive detection and discrimination of many clinically relevant biomolecules. This review will discuss the advancements of SERS combined with POU testing and the strength that machine learning can bring to the analysis to produce a powerful combined platform for human healthcare monitoring.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信