Distorting Local Structures to Modulate Ligand Fields in Vanadium Oxide for High-Performance Aqueous Zinc-Ion Batteries

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-02-28 DOI:10.1021/acsnano.4c18250
Heng Liu, Long Yang, Ting Shen, Changyuan Li, Te Kang, Huanhuan Niu, Wei-Hsiang Huang, Chun-Chi Chang, Menghao Yang, Guozhong Cao, Chaofeng Liu
{"title":"Distorting Local Structures to Modulate Ligand Fields in Vanadium Oxide for High-Performance Aqueous Zinc-Ion Batteries","authors":"Heng Liu, Long Yang, Ting Shen, Changyuan Li, Te Kang, Huanhuan Niu, Wei-Hsiang Huang, Chun-Chi Chang, Menghao Yang, Guozhong Cao, Chaofeng Liu","doi":"10.1021/acsnano.4c18250","DOIUrl":null,"url":null,"abstract":"Layered hydrate vanadates are promising cathode materials for aqueous zinc-ion batteries (AZIBs). Various intercalants have been preinserted into the interplanar space of hydrate vanadates with significantly enhanced kinetics and stabilized structures. However, such an enhancement is induced by various intercalants, and the relationship between the property enhancement and the type of intercalant still needs to be revealed. In this work, the distortion of octahedra induced by the preintercalation of benzyltrimethylammonium (BTA<sup>+</sup>) cations into hydrate vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>·<i>n</i>H<sub>2</sub>O, VOH) and the change in ligand field are studied using synchrotron X-ray pair distribution function (PDF) and X-ray absorption fine structure (XAFS). Variations in the local coordination of vanadium alter the ligand field, decreasing the energy of the lowest unoccupied orbitals (e*), which leads to an increased electrochemical potential. Additionally, the introduced BTA<sup>+</sup> facilitates fast ion diffusion and stabilizes the layer structure. A cathode with a distorted local structure delivers a specific capacity of 408 mAh/g at 0.5 A/g, with a capacity retention of 95% after 3000 cycles at 8 A/g.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"28 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18250","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Layered hydrate vanadates are promising cathode materials for aqueous zinc-ion batteries (AZIBs). Various intercalants have been preinserted into the interplanar space of hydrate vanadates with significantly enhanced kinetics and stabilized structures. However, such an enhancement is induced by various intercalants, and the relationship between the property enhancement and the type of intercalant still needs to be revealed. In this work, the distortion of octahedra induced by the preintercalation of benzyltrimethylammonium (BTA+) cations into hydrate vanadium pentoxide (V2O5·nH2O, VOH) and the change in ligand field are studied using synchrotron X-ray pair distribution function (PDF) and X-ray absorption fine structure (XAFS). Variations in the local coordination of vanadium alter the ligand field, decreasing the energy of the lowest unoccupied orbitals (e*), which leads to an increased electrochemical potential. Additionally, the introduced BTA+ facilitates fast ion diffusion and stabilizes the layer structure. A cathode with a distorted local structure delivers a specific capacity of 408 mAh/g at 0.5 A/g, with a capacity retention of 95% after 3000 cycles at 8 A/g.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信