Melt-Processed, One-Step, In Situ Hierarchically Structured Porous Polymer Nanocomposite for Radiative Cooling in Hot Weather

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-02-28 DOI:10.1002/smll.202500020
Jiahao Ni, Bin Zhao, Zipeng Zhang, Zifan Song, Wanjie Wang, Jianfeng Wang
{"title":"Melt-Processed, One-Step, In Situ Hierarchically Structured Porous Polymer Nanocomposite for Radiative Cooling in Hot Weather","authors":"Jiahao Ni,&nbsp;Bin Zhao,&nbsp;Zipeng Zhang,&nbsp;Zifan Song,&nbsp;Wanjie Wang,&nbsp;Jianfeng Wang","doi":"10.1002/smll.202500020","DOIUrl":null,"url":null,"abstract":"<p>Porous polymeric composite materials have recently garnered significant attention for passive radiative cooling. However, challenges of solvent usage in pore formation and achieving uniform dispersion of nanoparticles in polymer matrix remain major obstacles in eco-friendly construction of solar reflection/scattering structures. Here, porous polymer nanocomposites (FPCS) is presented with a hierarchically structured micropore/nanoparticle configuration, achieved by utilizing the thermal decomposition behavior of inexpensive sodium bicarbonate during universal melt processing. Sodium bicarbonate serves as micropore-forming agent and providing a source of uniformly dispersed nanoparticles from thermally decomposed sodium carbonate. The fabrication process eliminates the need for solvents and facilitates the uniform dispersion of nanoparticles easily in polymer melts. FPCS demonstrates high solar reflectance (94.2%) and high mid-infrared emissivity (94.5%), resulting in sub-ambient daytime cooling of ≈6.8 °C and a promising cooling effect of ≈2.0 °C under hot weather with ambient temperatures exceeding 52 °C. Furthermore, FPCS enables efficient sub-ambient cooling in environments with temperatures below zero. This study presents a straightforward, feasible, and eco-friendly approach to producing high-performance porous polymeric radiative cooling materials, showcasing significant potential for applications in building energy conservation, cooling water, preventing glacier melting, and addressing hot weather conditions.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 14","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500020","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Porous polymeric composite materials have recently garnered significant attention for passive radiative cooling. However, challenges of solvent usage in pore formation and achieving uniform dispersion of nanoparticles in polymer matrix remain major obstacles in eco-friendly construction of solar reflection/scattering structures. Here, porous polymer nanocomposites (FPCS) is presented with a hierarchically structured micropore/nanoparticle configuration, achieved by utilizing the thermal decomposition behavior of inexpensive sodium bicarbonate during universal melt processing. Sodium bicarbonate serves as micropore-forming agent and providing a source of uniformly dispersed nanoparticles from thermally decomposed sodium carbonate. The fabrication process eliminates the need for solvents and facilitates the uniform dispersion of nanoparticles easily in polymer melts. FPCS demonstrates high solar reflectance (94.2%) and high mid-infrared emissivity (94.5%), resulting in sub-ambient daytime cooling of ≈6.8 °C and a promising cooling effect of ≈2.0 °C under hot weather with ambient temperatures exceeding 52 °C. Furthermore, FPCS enables efficient sub-ambient cooling in environments with temperatures below zero. This study presents a straightforward, feasible, and eco-friendly approach to producing high-performance porous polymeric radiative cooling materials, showcasing significant potential for applications in building energy conservation, cooling water, preventing glacier melting, and addressing hot weather conditions.

Abstract Image

Abstract Image

热天气辐射冷却的熔融加工一步原位分层结构多孔聚合物纳米复合材料
多孔聚合物复合材料近年来在被动辐射冷却方面受到了广泛关注。然而,溶剂在孔隙形成中的使用和纳米颗粒在聚合物基质中的均匀分散仍然是生态友好型太阳反射/散射结构构建的主要障碍。在这里,多孔聚合物纳米复合材料(FPCS)具有分层结构的微孔/纳米颗粒结构,通过利用廉价的碳酸氢钠在通用熔体加工过程中的热分解行为来实现。碳酸氢钠作为微孔形成剂,从热分解的碳酸钠中提供均匀分散的纳米颗粒。该制造工艺消除了对溶剂的需求,并使纳米颗粒易于在聚合物熔体中均匀分散。FPCS具有较高的太阳反射率(94.2%)和中红外发射率(94.5%),在高温环境温度超过52℃的情况下,白天亚环境冷却效果约为6.8℃,降温效果约为2.0℃。此外,FPCS可以在温度低于零度的环境中实现高效的亚环境冷却。这项研究提出了一种简单、可行、环保的方法来生产高性能多孔聚合物辐射冷却材料,在建筑节能、冷却水、防止冰川融化和应对炎热天气条件方面展示了巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信