{"title":"Crystallographic structure of aluminum oxide bonding interfaces prepared via room‐temperature surface-activated bonding","authors":"Jun Utsumi, Ryo Takigawa","doi":"10.1016/j.apsusc.2025.162825","DOIUrl":null,"url":null,"abstract":"<div><div>The structure and chemistry of the aluminum oxide bonding interface formed via room-temperature surface-activated bonding were investigated using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). The results revealed that Al atoms at the interface of sapphire (α-Al<sub>2</sub>O<sub>3</sub>)–sapphire bonding occupied both octahedral and tetrahedral sites. The sapphire–Al<sub>2</sub>O<sub>3</sub> film bonding interface also exhibited localized formation of a γ-Al<sub>2</sub>O<sub>3</sub> phase, whereas the Al<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub> film bonding showed no distinct reaction layer. Fast Fourier transform (FFT) analyses of high-resolution TEM images from the interlayer region at the sapphire–sapphire bonding interfaces revealed lattice diffraction patterns similar to those of the sapphire substrate. A corresponding FFT diffraction pattern was observed at the sapphire–Al<sub>2</sub>O<sub>3</sub> film bonding interface in spite of the fact that the atomic structure was not clearly visible. Changes in the coordination state of the Al atoms on the sapphire surface during activation significantly affect these aluminum oxide bonds. This study contributes to the understanding of the bonding mechanism in direct bonding of aluminum oxides at room temperature.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"694 ","pages":"Article 162825"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225005392","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The structure and chemistry of the aluminum oxide bonding interface formed via room-temperature surface-activated bonding were investigated using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). The results revealed that Al atoms at the interface of sapphire (α-Al2O3)–sapphire bonding occupied both octahedral and tetrahedral sites. The sapphire–Al2O3 film bonding interface also exhibited localized formation of a γ-Al2O3 phase, whereas the Al2O3–Al2O3 film bonding showed no distinct reaction layer. Fast Fourier transform (FFT) analyses of high-resolution TEM images from the interlayer region at the sapphire–sapphire bonding interfaces revealed lattice diffraction patterns similar to those of the sapphire substrate. A corresponding FFT diffraction pattern was observed at the sapphire–Al2O3 film bonding interface in spite of the fact that the atomic structure was not clearly visible. Changes in the coordination state of the Al atoms on the sapphire surface during activation significantly affect these aluminum oxide bonds. This study contributes to the understanding of the bonding mechanism in direct bonding of aluminum oxides at room temperature.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.