A heart-brain-spleen axis controls cardiac remodeling to hypertensive stress

IF 25.5 1区 医学 Q1 IMMUNOLOGY
Sara Perrotta, Lorenzo Carnevale, Marialuisa Perrotta, Fabio Pallante, Tomasz P. Mikołajczyk, Valentina Fardella, Agnese Migliaccio, Stefania Fardella, Sara Nejat, Boguslaw Kapelak, Azzurra Zonfrilli, Jacopo Pacella, Francesco Mastroiacovo, Raimondo Carnevale, Calum Bain, Sarah Lena Puhl, Giuseppe D’Agostino, Slava Epelman, Tomasz J. Guzik, Giuseppe Lembo, Daniela Carnevale
{"title":"A heart-brain-spleen axis controls cardiac remodeling to hypertensive stress","authors":"Sara Perrotta, Lorenzo Carnevale, Marialuisa Perrotta, Fabio Pallante, Tomasz P. Mikołajczyk, Valentina Fardella, Agnese Migliaccio, Stefania Fardella, Sara Nejat, Boguslaw Kapelak, Azzurra Zonfrilli, Jacopo Pacella, Francesco Mastroiacovo, Raimondo Carnevale, Calum Bain, Sarah Lena Puhl, Giuseppe D’Agostino, Slava Epelman, Tomasz J. Guzik, Giuseppe Lembo, Daniela Carnevale","doi":"10.1016/j.immuni.2025.02.013","DOIUrl":null,"url":null,"abstract":"Hypertensive heart disease (HTN-HD) meaningfully contributes to hypertension morbidity and mortality. Initially established as an adaptive response, HTN-HD progresses toward worsening of left ventricule (LV) function and heart failure (HF). Hypertensive stress elevates sympathetic nervous system (SNS) activity, a negative clinical predictor, and expands macrophages. How they interact in the compensatory phase of HTN-HD is unclear. We report that LV pressure overload recruited a brainstem neural circuit to enhance splenic SNS and induce placental growth factor (PlGF) secretion. During hypertensive stress, PlGF drove the proliferation of self-renewing cardiac resident macrophages (RMs) expressing its receptor neuropilin-1 (NRP1). Inhibition of the splenic neuroimmune axis or ablation of NRP1 in RM hindered the adaptive response to hypertensive stress, leading to HF. In humans, circulating PlGF correlated with cardiac hypertrophy, and failing hearts expressed NRP1 in RMs. Here, we discovered a multiorgan response driving a neural reflex to expand cardiac NRP1+ RM and counteract HF.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"15 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2025.02.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertensive heart disease (HTN-HD) meaningfully contributes to hypertension morbidity and mortality. Initially established as an adaptive response, HTN-HD progresses toward worsening of left ventricule (LV) function and heart failure (HF). Hypertensive stress elevates sympathetic nervous system (SNS) activity, a negative clinical predictor, and expands macrophages. How they interact in the compensatory phase of HTN-HD is unclear. We report that LV pressure overload recruited a brainstem neural circuit to enhance splenic SNS and induce placental growth factor (PlGF) secretion. During hypertensive stress, PlGF drove the proliferation of self-renewing cardiac resident macrophages (RMs) expressing its receptor neuropilin-1 (NRP1). Inhibition of the splenic neuroimmune axis or ablation of NRP1 in RM hindered the adaptive response to hypertensive stress, leading to HF. In humans, circulating PlGF correlated with cardiac hypertrophy, and failing hearts expressed NRP1 in RMs. Here, we discovered a multiorgan response driving a neural reflex to expand cardiac NRP1+ RM and counteract HF.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信