{"title":"Combination of Density Functional Theory and Machine Learning Provides Deeper Insight of the Underlying Mechanism in the Ultraviolet/Persulfate System","authors":"Jialiang Liang, Dudan Wang, Peng Zhen, Jingke Wu, Yunyi Li, Fuyang Liu, Yun Shen, Meiping Tong","doi":"10.1021/acs.est.4c14644","DOIUrl":null,"url":null,"abstract":"The competition between radical and nonradical processes in the activated persulfate system is a captivating and challenging topic in advanced oxidation processes. However, traditional research methods have encountered limitations in this area. This study employed DFT combined with machine learning to establish a quantitative structure–activity relationship between contributions of active species and molecular structures of pollutants in the UV persulfate system. By comparing models using different input data sets, it was observed that the protonation and deprotonation processes of organic molecules play a crucial role. Additionally, the condensed Fukui function, as a local descriptor, is found to be less effective compared to the dual descriptor due to its imprecise definition of <i>f</i><sup>0</sup>. The sulfate radical exhibits high selectivity toward local electrophilic sites on molecules, while global descriptors determined by their chemical properties provide better predictions for contribution rates of hydroxyl radicals. Interestingly, there exists a piecewise function relating the contribution rates of different active species to <i>E</i><sub><i>LU</i>–<i>HO</i></sub>, which is further supported by experimental data. Currently, this relationship cannot be explained by classical chemical theory and requires further investigation. Perhaps this is a new perspective brought to us by combining DFT with machine learning.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"24 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c14644","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The competition between radical and nonradical processes in the activated persulfate system is a captivating and challenging topic in advanced oxidation processes. However, traditional research methods have encountered limitations in this area. This study employed DFT combined with machine learning to establish a quantitative structure–activity relationship between contributions of active species and molecular structures of pollutants in the UV persulfate system. By comparing models using different input data sets, it was observed that the protonation and deprotonation processes of organic molecules play a crucial role. Additionally, the condensed Fukui function, as a local descriptor, is found to be less effective compared to the dual descriptor due to its imprecise definition of f0. The sulfate radical exhibits high selectivity toward local electrophilic sites on molecules, while global descriptors determined by their chemical properties provide better predictions for contribution rates of hydroxyl radicals. Interestingly, there exists a piecewise function relating the contribution rates of different active species to ELU–HO, which is further supported by experimental data. Currently, this relationship cannot be explained by classical chemical theory and requires further investigation. Perhaps this is a new perspective brought to us by combining DFT with machine learning.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.