Xiaopeng Lu, Yufei Xie, Xinyu Zhang, Jirui Ma, Lingxiong Sun, Quantong Jiang, Wojciech Simka, Dan Zhang, Baorong Hou, Fuhui Wang
{"title":"Comprehensive study on corrosion, wear and fatigue performance of low-porosity PEO coating on Mg alloy","authors":"Xiaopeng Lu, Yufei Xie, Xinyu Zhang, Jirui Ma, Lingxiong Sun, Quantong Jiang, Wojciech Simka, Dan Zhang, Baorong Hou, Fuhui Wang","doi":"10.1016/j.jma.2025.01.023","DOIUrl":null,"url":null,"abstract":"Novel neutral electrolytes were designed to substantially decrease porosity and increase barrier property of plasma electrolytic oxidation (PEO) coating on AM50 Mg surface. Presence of additives was effective in tuning coating microstructure and composition, leading to significantly enhanced corrosion and wear properties. 50 % improvement in fatigue limit was detected for the optimized coating compared to conventional PEO coating. The low-porosity coating remained uncorroded after performing salt spray test for 1 month, and exposure 1 year in harsh South China Sea environment. This can be new strategy to evaluate coating lifespan and promote wide range of applications for Mg alloy.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"11 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.01.023","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Novel neutral electrolytes were designed to substantially decrease porosity and increase barrier property of plasma electrolytic oxidation (PEO) coating on AM50 Mg surface. Presence of additives was effective in tuning coating microstructure and composition, leading to significantly enhanced corrosion and wear properties. 50 % improvement in fatigue limit was detected for the optimized coating compared to conventional PEO coating. The low-porosity coating remained uncorroded after performing salt spray test for 1 month, and exposure 1 year in harsh South China Sea environment. This can be new strategy to evaluate coating lifespan and promote wide range of applications for Mg alloy.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.