Margaret B. Allison, Ciprian Catana, Iris Y. Zhou, Peter Caravan, Sydney B. Montesi
{"title":"Molecular Imaging of Pulmonary Fibrosis","authors":"Margaret B. Allison, Ciprian Catana, Iris Y. Zhou, Peter Caravan, Sydney B. Montesi","doi":"10.2967/jnumed.124.267852","DOIUrl":null,"url":null,"abstract":"<p>Fibrosing lung diseases affect over 160,000 individuals in the United States alone and can carry a prognosis that is worse than many cancers. Antifibrotic treatments modify only the rate of fibrosis progression, and more effective therapies are urgently needed. Molecular imaging enables visualization of disease pathogenesis in progress. It provides a noninvasive means to monitor and quantify dysregulated molecular fibrotic pathways and shows great promise in aiding the diagnosis and disease activity monitoring of pulmonary fibrosis. Here, we review molecular imaging probes under development for use in pulmonary fibrosis. We provide our opinion on current challenges in translating preclinical molecular imaging probes into clinical successes, as well as future directions for expanding their use in drug development.</p>","PeriodicalId":22820,"journal":{"name":"The Journal of Nuclear Medicine","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.124.267852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fibrosing lung diseases affect over 160,000 individuals in the United States alone and can carry a prognosis that is worse than many cancers. Antifibrotic treatments modify only the rate of fibrosis progression, and more effective therapies are urgently needed. Molecular imaging enables visualization of disease pathogenesis in progress. It provides a noninvasive means to monitor and quantify dysregulated molecular fibrotic pathways and shows great promise in aiding the diagnosis and disease activity monitoring of pulmonary fibrosis. Here, we review molecular imaging probes under development for use in pulmonary fibrosis. We provide our opinion on current challenges in translating preclinical molecular imaging probes into clinical successes, as well as future directions for expanding their use in drug development.