Jieshan Huang, Jun Mao, Xudong Li, Jingze Yuan, Yun Zheng, Chonghao Zhai, Tianxiang Dai, Zhaorong Fu, Jueming Bao, Yan Yang, Daoxin Dai, Yan Li, Qihuang Gong, Jianwei Wang
{"title":"Integrated optical entangled quantum vortex emitters","authors":"Jieshan Huang, Jun Mao, Xudong Li, Jingze Yuan, Yun Zheng, Chonghao Zhai, Tianxiang Dai, Zhaorong Fu, Jueming Bao, Yan Yang, Daoxin Dai, Yan Li, Qihuang Gong, Jianwei Wang","doi":"10.1038/s41566-025-01620-5","DOIUrl":null,"url":null,"abstract":"<p>Quantum vortices of light carrying orbital angular momentum stand as essential resources for quantum photonic technologies. Recent advancements in integrated photonics offer the potential to create and control quantum vortices using fully integrated circuits, eliminating the need for intricate free-space alignment, modulation and the stabilization of bulky optical elements. However, generating quantum vortices in planar optical waveguides and circuits poses challenges, owing to the complexities of confining and guiding twisted photons and, importantly, the difficulties in preparing the quantum superposition and entanglement of vortex states. Here we report the realization of entangled quantum vortex emitters, leveraging programmable integrated nanophotonic circuits. These circuits enable the generation and arbitrary control of resilient vortex entanglement in free space, coherently transitioning from on-chip-created path entanglement. This capability is facilitated by a chip-to-free-space interfacing quantum technology that combines reprogrammable integrated quantum photonics with advanced classical free-space beam structuring. The emitters operate in a plug-and-play manner, enabling swift reconfiguration within microseconds. Validation of multidimensional genuine entanglement is achieved through quantum tomography and measurement of the dimension witness. Our work demonstrates integrated quantum vortex devices that combine the versatility of the on-chip processing quantum information with the robustness of transmitting quantum vortices in free space, opening new avenues for applications in quantum communication, quantum light detection and ranging, and quantum computation and storage.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"32 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01620-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum vortices of light carrying orbital angular momentum stand as essential resources for quantum photonic technologies. Recent advancements in integrated photonics offer the potential to create and control quantum vortices using fully integrated circuits, eliminating the need for intricate free-space alignment, modulation and the stabilization of bulky optical elements. However, generating quantum vortices in planar optical waveguides and circuits poses challenges, owing to the complexities of confining and guiding twisted photons and, importantly, the difficulties in preparing the quantum superposition and entanglement of vortex states. Here we report the realization of entangled quantum vortex emitters, leveraging programmable integrated nanophotonic circuits. These circuits enable the generation and arbitrary control of resilient vortex entanglement in free space, coherently transitioning from on-chip-created path entanglement. This capability is facilitated by a chip-to-free-space interfacing quantum technology that combines reprogrammable integrated quantum photonics with advanced classical free-space beam structuring. The emitters operate in a plug-and-play manner, enabling swift reconfiguration within microseconds. Validation of multidimensional genuine entanglement is achieved through quantum tomography and measurement of the dimension witness. Our work demonstrates integrated quantum vortex devices that combine the versatility of the on-chip processing quantum information with the robustness of transmitting quantum vortices in free space, opening new avenues for applications in quantum communication, quantum light detection and ranging, and quantum computation and storage.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.