Two-pion exchange for coupled-channel scattering of two heavy mesons

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
J. T. Chacko, V. Baru, C. Hanhart, S. L. Krug
{"title":"Two-pion exchange for coupled-channel scattering of two heavy mesons","authors":"J. T. Chacko, V. Baru, C. Hanhart, S. L. Krug","doi":"10.1103/physrevd.111.034042","DOIUrl":null,"url":null,"abstract":"To improve the theoretical understanding of multiquark states like Z</a:mi></a:mrow>b</a:mi></a:mrow></a:msub>(</a:mo>10610</a:mn>)</a:mo></a:mrow></a:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>Z</e:mi><e:mi>b</e:mi></e:msub><e:mo stretchy=\"false\">(</e:mo><e:mn>10650</e:mn><e:mo stretchy=\"false\">)</e:mo></e:math>, we calculate the heavy-meson heavy-(anti)meson scattering potential up to next-to-leading order, <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi mathvariant=\"script\">O</i:mi><i:mo stretchy=\"false\">(</i:mo><i:msup><i:mi>Q</i:mi><i:mn>2</i:mn></i:msup><i:mo stretchy=\"false\">)</i:mo></i:math>, within chiral effective field theory (<n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mrow><n:mi>χ</n:mi><n:mi>EFT</n:mi></n:mrow></n:math>) employing a power counting scheme that explicitly keeps track with the large momentum scale <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mi>Q</p:mi><p:mo>∼</p:mo><p:msqrt><p:mrow><p:mn>2</p:mn><p:mi>μ</p:mi><p:mi>δ</p:mi></p:mrow></p:msqrt></p:math> (where <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mi>δ</r:mi><r:mo>=</r:mo><r:msub><r:mi>m</r:mi><r:mi>V</r:mi></r:msub><r:mo>−</r:mo><r:msub><r:mi>m</r:mi><r:mi>P</r:mi></r:msub></r:math> is the vector-pseudoscalar mass difference and <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:mi>μ</t:mi></t:math> their reduced mass) introduced by the coupled channel dynamics. We provide expressions for the two-pion exchange (TPE) terms up to <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><v:mi mathvariant=\"script\">O</v:mi><v:mo stretchy=\"false\">(</v:mo><v:msup><v:mi>Q</v:mi><v:mn>2</v:mn></v:msup><v:mo stretchy=\"false\">)</v:mo></v:math> and their partial-wave decomposition. We show that these potentials are well approximated by contact terms at O</ab:mi>(</ab:mo>Q</ab:mi>2</ab:mn></ab:msup>)</ab:mo></ab:math>, with minor residual nonanalytic TPE contributions, supporting <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:mi>χ</fb:mi><fb:mi>EFT</fb:mi></fb:math> convergence in the theoretical predictions for <hb:math xmlns:hb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><hb:msub><hb:mi>Z</hb:mi><hb:mi>b</hb:mi></hb:msub><hb:mo stretchy=\"false\">(</hb:mo><hb:mn>10610</hb:mn><hb:mo stretchy=\"false\">)</hb:mo></hb:math> and <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:msub><lb:mi>Z</lb:mi><lb:mi>b</lb:mi></lb:msub><lb:mo stretchy=\"false\">(</lb:mo><lb:mn>10650</lb:mn><lb:mo stretchy=\"false\">)</lb:mo></lb:math>, as well as their spin partners. These findings are also relevant for <pb:math xmlns:pb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pb:msup><pb:mi>D</pb:mi><pb:mrow><pb:mo stretchy=\"false\">(</pb:mo><pb:mo>*</pb:mo><pb:mo stretchy=\"false\">)</pb:mo></pb:mrow></pb:msup><pb:msup><pb:mi>D</pb:mi><pb:mrow><pb:mo stretchy=\"false\">(</pb:mo><pb:mo>*</pb:mo><pb:mo stretchy=\"false\">)</pb:mo></pb:mrow></pb:msup></pb:math> scattering, especially for the <vb:math xmlns:vb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vb:msub><vb:mi>T</vb:mi><vb:mrow><vb:mi>c</vb:mi><vb:mi>c</vb:mi></vb:mrow></vb:msub></vb:math> state, for both physical and lattice quantum chromodynamics (QCD) data with moderately larger pion masses. We further demonstrate that the differences between isovector and isoscalar potentials for heavy mesons are naturally explained by the TPE contributions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"28 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.034042","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the theoretical understanding of multiquark states like Zb(10610) and Zb(10650), we calculate the heavy-meson heavy-(anti)meson scattering potential up to next-to-leading order, O(Q2), within chiral effective field theory (χEFT) employing a power counting scheme that explicitly keeps track with the large momentum scale Q2μδ (where δ=mVmP is the vector-pseudoscalar mass difference and μ their reduced mass) introduced by the coupled channel dynamics. We provide expressions for the two-pion exchange (TPE) terms up to O(Q2) and their partial-wave decomposition. We show that these potentials are well approximated by contact terms at O(Q2), with minor residual nonanalytic TPE contributions, supporting χEFT convergence in the theoretical predictions for Zb(10610) and Zb(10650), as well as their spin partners. These findings are also relevant for D(*)D(*) scattering, especially for the Tcc state, for both physical and lattice quantum chromodynamics (QCD) data with moderately larger pion masses. We further demonstrate that the differences between isovector and isoscalar potentials for heavy mesons are naturally explained by the TPE contributions. Published by the American Physical Society 2025
两个重介子耦合通道散射的双介子交换
为了提高对Zb(10610)和Zb(10650)等多夸克态的理论理解,我们在手性有效场理论(χEFT)中计算了重介子重(反)介子散射势,并采用了一种功率计数方案,该方案明确地跟踪了耦合通道动力学引入的大动量尺度Q ~ 2μδ(其中δ=mV−mP是矢量伪标量质量差,μ是它们的简化质量)。我们给出了高达O(Q2)的双介子交换(TPE)项的表达式及其部分波分解。我们表明,这些势可以很好地由O(Q2)处的接触项近似,残余非解析TPE贡献很小,支持对Zb(10610)和Zb(10650)及其自旋伙伴的理论预测中的χEFT收敛。这些发现也与D(*)D(*)散射有关,特别是对于具有中等较大介子质量的物理和晶格量子色动力学(QCD)数据的Tcc态。我们进一步证明,重介子的等矢量势和等标量势之间的差异可以用TPE贡献来解释。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信