A framework for the modelling and the analysis of epidemiological spread in commuting populations.

Pierre-Alexandre Bliman, Boureima Sangaré, Assane Savadogo
{"title":"A framework for the modelling and the analysis of epidemiological spread in commuting populations.","authors":"Pierre-Alexandre Bliman, Boureima Sangaré, Assane Savadogo","doi":"10.1016/j.mbs.2025.109403","DOIUrl":null,"url":null,"abstract":"<p><p>In the present paper, our goal is to establish a framework for the mathematical modelling and the analysis of the spread of an epidemic in a large population commuting regularly, typically along a time-periodic pattern, as is roughly speaking the case in populous urban center. Our modelling contribution develops along two axes. To model the commuting, we consider a large number of distinct homogeneous groups of individuals of various sizes, called subpopulations, and focus on the modelling of the changing conditions of their mixing along time and of the induced disease transmission. Also, for the purposes of the study, we propose a general class of epidemiological models in which the 'force of infection' plays a central role, which extends and unifies several classes previously developed. We take special care in explaining the modelling approach in details, and provide analytic results that allow to compute or estimate the value of the basic reproduction number for such general periodic epidemic systems.</p>","PeriodicalId":94129,"journal":{"name":"Mathematical biosciences","volume":" ","pages":"109403"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mbs.2025.109403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, our goal is to establish a framework for the mathematical modelling and the analysis of the spread of an epidemic in a large population commuting regularly, typically along a time-periodic pattern, as is roughly speaking the case in populous urban center. Our modelling contribution develops along two axes. To model the commuting, we consider a large number of distinct homogeneous groups of individuals of various sizes, called subpopulations, and focus on the modelling of the changing conditions of their mixing along time and of the induced disease transmission. Also, for the purposes of the study, we propose a general class of epidemiological models in which the 'force of infection' plays a central role, which extends and unifies several classes previously developed. We take special care in explaining the modelling approach in details, and provide analytic results that allow to compute or estimate the value of the basic reproduction number for such general periodic epidemic systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信