EEG-based recognition of hand movement and its parameter.

Yuxuan Yan, Jianguang Li, Mingyue Yin
{"title":"EEG-based recognition of hand movement and its parameter.","authors":"Yuxuan Yan, Jianguang Li, Mingyue Yin","doi":"10.1088/1741-2552/adba8a","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objecitve</i>. Brain-computer interface is a cutting-edge technology that enables interaction with external devices by decoding human intentions, and is highly valuable in the fields of medical rehabilitation and human-robot collaboration. The technique of decoding motor intent for motor execution (ME) based on electroencephalographic (EEG) signals is in the feasibility study stage by now. There are still insufficient studies on the accuracy of ME EEG signal recognition in between-subjects classification to reach the level of realistic applications. This paper aims to investigate EEG signal-based hand movement recognition by analyzing low-frequency time-domain information.<i>Approach</i>. Experiments with four types of hand movements, two force parameter (picking up and pushing) tasks, and a four-target directional displacement task were designed and executed, and the EEG data from thirteen healthy volunteers was collected. Sliding window approach is used to expand the dataset in order to address the issue of EEG signal overfitting. Furtherly, Convolutional Neural Network (CNN)-Bidirectional Long Short-Term Memory Network (BiLSTM) model, an end-to-end serial combination of a BiLSTM and (CNN) is constructed to classify and recognize the hand movement based on the raw EEG data.<i>Main results</i>. According to the experimental results, the model is able to categorize four types of hand movements, picking up movements, pushing movements, and four target direction displacement movements with an accuracy of 99.14% ± 0.49%, 99.29% ± 0.11%, 99.23% ± 0.60%, and 98.11% ± 0.23%, respectively.<i>Significance</i>. Furthermore, comparative tests conducted with alternative deep learning models (LSTM, CNN, EEGNet, CNN-LSTM) demonstrates that the CNN-BiLSTM model is with practicable accuracy in terms of EEG-based hand movement recognition and its parameter decoding.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adba8a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objecitve. Brain-computer interface is a cutting-edge technology that enables interaction with external devices by decoding human intentions, and is highly valuable in the fields of medical rehabilitation and human-robot collaboration. The technique of decoding motor intent for motor execution (ME) based on electroencephalographic (EEG) signals is in the feasibility study stage by now. There are still insufficient studies on the accuracy of ME EEG signal recognition in between-subjects classification to reach the level of realistic applications. This paper aims to investigate EEG signal-based hand movement recognition by analyzing low-frequency time-domain information.Approach. Experiments with four types of hand movements, two force parameter (picking up and pushing) tasks, and a four-target directional displacement task were designed and executed, and the EEG data from thirteen healthy volunteers was collected. Sliding window approach is used to expand the dataset in order to address the issue of EEG signal overfitting. Furtherly, Convolutional Neural Network (CNN)-Bidirectional Long Short-Term Memory Network (BiLSTM) model, an end-to-end serial combination of a BiLSTM and (CNN) is constructed to classify and recognize the hand movement based on the raw EEG data.Main results. According to the experimental results, the model is able to categorize four types of hand movements, picking up movements, pushing movements, and four target direction displacement movements with an accuracy of 99.14% ± 0.49%, 99.29% ± 0.11%, 99.23% ± 0.60%, and 98.11% ± 0.23%, respectively.Significance. Furthermore, comparative tests conducted with alternative deep learning models (LSTM, CNN, EEGNet, CNN-LSTM) demonstrates that the CNN-BiLSTM model is with practicable accuracy in terms of EEG-based hand movement recognition and its parameter decoding.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信