Deep learning models as learners for EEG-based functional brain networks.

Yuxuan Yang, Yanli Li
{"title":"Deep learning models as learners for EEG-based functional brain networks<sup />.","authors":"Yuxuan Yang, Yanli Li","doi":"10.1088/1741-2552/adba8c","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Functional brain network (FBN) methods are commonly integrated with deep learning (DL) models for EEG analysis. Typically, an FBN is constructed to extract features from EEG data, which are then fed into a DL model for further analysis. Beyond this two-step approach, there is potential to embed FBN construction directly within DL models as a feature extraction module, enabling the models to learn EEG representations end-to-end while incorporating insights from FBNs. However, a critical prerequisite is whether DL models can effectively learn the FBN construction process.<i>Approach.</i>To address this, we propose using DL models to learn FBN matrices derived from EEG data. The ability of DL models to accurately reproduce these matrices would validate their capacity to learn the FBN construction process. This approach is tested on two publicly available EEG datasets, utilizing seven DL models to learn four representative FBN matrices. Model performance is assessed through mean squared error (MSE), Pearson correlation coefficient (Corr), and concordance correlation coefficient (CCC) between predicted and actual matrices.<i>Main results.</i>The results show that DL models achieve low MSE and relatively high Corr and CCC values when learning the Coherence network. Visualizations of predicted and error matrices reveal that while DL models capture the general structure of all four FBNs, certain regions remain difficult to model accurately. Additionally, a paired<i>t</i>-test comparing global efficiency and nodal degree between predicted and actual networks indicates that most predicted networks significantly differ from the actual networks (p<0.05).<i>Significance.</i>These findings suggest that while DL models can learn the connectivity relationships of certain FBNs, they struggle to capture the intrinsic topological structures. This highlights the irreplaceability of traditional FBN methods in EEG analysis and underscores the need for hybrid strategies that combine FBN methods with DL models for a more comprehensive analysis.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adba8c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Functional brain network (FBN) methods are commonly integrated with deep learning (DL) models for EEG analysis. Typically, an FBN is constructed to extract features from EEG data, which are then fed into a DL model for further analysis. Beyond this two-step approach, there is potential to embed FBN construction directly within DL models as a feature extraction module, enabling the models to learn EEG representations end-to-end while incorporating insights from FBNs. However, a critical prerequisite is whether DL models can effectively learn the FBN construction process.Approach.To address this, we propose using DL models to learn FBN matrices derived from EEG data. The ability of DL models to accurately reproduce these matrices would validate their capacity to learn the FBN construction process. This approach is tested on two publicly available EEG datasets, utilizing seven DL models to learn four representative FBN matrices. Model performance is assessed through mean squared error (MSE), Pearson correlation coefficient (Corr), and concordance correlation coefficient (CCC) between predicted and actual matrices.Main results.The results show that DL models achieve low MSE and relatively high Corr and CCC values when learning the Coherence network. Visualizations of predicted and error matrices reveal that while DL models capture the general structure of all four FBNs, certain regions remain difficult to model accurately. Additionally, a pairedt-test comparing global efficiency and nodal degree between predicted and actual networks indicates that most predicted networks significantly differ from the actual networks (p<0.05).Significance.These findings suggest that while DL models can learn the connectivity relationships of certain FBNs, they struggle to capture the intrinsic topological structures. This highlights the irreplaceability of traditional FBN methods in EEG analysis and underscores the need for hybrid strategies that combine FBN methods with DL models for a more comprehensive analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信