Integrative Analysis of the Impact of Prenatal Depression on the Newborn Intestinal Microbiota.

Wafaa Taha, Oumaima Anachad, Amine Taouil, Chaimaa Saadoune, Mariame El Messal, Faiza Bennis, Fatima Chegdani
{"title":"Integrative Analysis of the Impact of Prenatal Depression on the Newborn Intestinal Microbiota.","authors":"Wafaa Taha, Oumaima Anachad, Amine Taouil, Chaimaa Saadoune, Mariame El Messal, Faiza Bennis, Fatima Chegdani","doi":"10.2174/0118715249361952250209084153","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>More than 15% of women develop symptoms of depression during pregnancy, which often affects the mental and physical development of the newborn by altering its intestinal microbiota. Previous studies revealed that the gut microbiota plays a crucial role in the maturation of systems involved in the gut-brain axis, including the gastrointestinal system, the immune system, and the hypothalamic-pituitary-adrenal system axis.</p><p><strong>Methods: </strong>This study aims to explore the cross-talk between the prenatal depression process and neonatal intestinal microbiota diversity. A total of 100 differentially expressed genes (DEGs) associated with prenatal depression were collected from various scientific publications and databases. Bioinformatics tools were used to analyze these DEGs. The STRING database. ToppGene database and DICE were employed for this integrative analysis.</p><p><strong>Results: </strong>The network generated by the STRING database identified six pivotal genes: TNF, BDNF, IL-6, NR3C1, IGF2, and POMC. These genes regulate response to endogenous hormones, particularly cortisol secretion in newborns, as well as inhibiting serotonin secretion. Moreover, these genes are linked to major depressive disorder and other mental diseases, contributing to maternal and neonatal gut microbiota dysbiosis. Analysis using ToppGene and DICE's further validated the biological processes identified by String, including the regulation of cellular cortisol secretion, metabolic processes, and serotonin inhibition.</p><p><strong>Conclusion: </strong>The bioinformatics tools employed in this study allowed us to identify pivotal genes involved in prenatal depression, their associated signaling pathways, and their roles in modulating maternal and neonatal gut microbiota.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715249361952250209084153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: More than 15% of women develop symptoms of depression during pregnancy, which often affects the mental and physical development of the newborn by altering its intestinal microbiota. Previous studies revealed that the gut microbiota plays a crucial role in the maturation of systems involved in the gut-brain axis, including the gastrointestinal system, the immune system, and the hypothalamic-pituitary-adrenal system axis.

Methods: This study aims to explore the cross-talk between the prenatal depression process and neonatal intestinal microbiota diversity. A total of 100 differentially expressed genes (DEGs) associated with prenatal depression were collected from various scientific publications and databases. Bioinformatics tools were used to analyze these DEGs. The STRING database. ToppGene database and DICE were employed for this integrative analysis.

Results: The network generated by the STRING database identified six pivotal genes: TNF, BDNF, IL-6, NR3C1, IGF2, and POMC. These genes regulate response to endogenous hormones, particularly cortisol secretion in newborns, as well as inhibiting serotonin secretion. Moreover, these genes are linked to major depressive disorder and other mental diseases, contributing to maternal and neonatal gut microbiota dysbiosis. Analysis using ToppGene and DICE's further validated the biological processes identified by String, including the regulation of cellular cortisol secretion, metabolic processes, and serotonin inhibition.

Conclusion: The bioinformatics tools employed in this study allowed us to identify pivotal genes involved in prenatal depression, their associated signaling pathways, and their roles in modulating maternal and neonatal gut microbiota.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信