Interpretation of cardiopulmonary exercise test by GPT - promising tool as a first step to identify normal results.

IF 2.7
Expert review of respiratory medicine Pub Date : 2025-04-01 Epub Date: 2025-03-02 DOI:10.1080/17476348.2025.2474138
Eyal Kleinhendler, Avital Pinkhasov, Samah Hayek, Avraham Man, Ophir Freund, Tal Moshe Perluk, Evgeni Gershman, Avraham Unterman, Gil Fire, Amir Bar-Shai
{"title":"Interpretation of cardiopulmonary exercise test by GPT - promising tool as a first step to identify normal results.","authors":"Eyal Kleinhendler, Avital Pinkhasov, Samah Hayek, Avraham Man, Ophir Freund, Tal Moshe Perluk, Evgeni Gershman, Avraham Unterman, Gil Fire, Amir Bar-Shai","doi":"10.1080/17476348.2025.2474138","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiopulmonary exercise testing (CPET) is used in the evaluation of unexplained dyspnea. However, its interpretation requires expertise that is often not available. We aim to evaluate the utility of ChatGPT (GPT) in interpreting CPET results.</p><p><strong>Research design and methods: </strong>This cross-sectional study included 150 patients who underwent CPET. Two expert pulmonologists categorized the results as normal or abnormal (cardiovascular, pulmonary, or other exercise limitations), being the gold standard. GPT versions 3.5 (GPT-3.5) and 4 (GPT-4) analyzed the same data using pre-defined structured inputs.</p><p><strong>Results: </strong>GPT-3.5 correctly interpreted 67% of the cases. It achieved a sensitivity of 75% and specificity of 98% in identifying normal CPET results. GPT-3.5 had varying results for abnormal CPET tests, depending on the limiting etiology. In contrast, GPT-4 demonstrated improvements in interpreting abnormal tests, with sensitivities of 83% and 92% for respiratory and cardiovascular limitations, respectively. Combining the normal CPET interpretations by both AI models resulted in 91% sensitivity and 98% specificity. Low work rate and peak oxygen consumption were independent predictors for inaccurate interpretations.</p><p><strong>Conclusions: </strong>Both GPT-3.5 and GPT-4 succeeded in ruling out abnormal CPET results. This tool could be utilized to differentiate between normal and abnormal results.</p>","PeriodicalId":94007,"journal":{"name":"Expert review of respiratory medicine","volume":" ","pages":"371-378"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of respiratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17476348.2025.2474138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cardiopulmonary exercise testing (CPET) is used in the evaluation of unexplained dyspnea. However, its interpretation requires expertise that is often not available. We aim to evaluate the utility of ChatGPT (GPT) in interpreting CPET results.

Research design and methods: This cross-sectional study included 150 patients who underwent CPET. Two expert pulmonologists categorized the results as normal or abnormal (cardiovascular, pulmonary, or other exercise limitations), being the gold standard. GPT versions 3.5 (GPT-3.5) and 4 (GPT-4) analyzed the same data using pre-defined structured inputs.

Results: GPT-3.5 correctly interpreted 67% of the cases. It achieved a sensitivity of 75% and specificity of 98% in identifying normal CPET results. GPT-3.5 had varying results for abnormal CPET tests, depending on the limiting etiology. In contrast, GPT-4 demonstrated improvements in interpreting abnormal tests, with sensitivities of 83% and 92% for respiratory and cardiovascular limitations, respectively. Combining the normal CPET interpretations by both AI models resulted in 91% sensitivity and 98% specificity. Low work rate and peak oxygen consumption were independent predictors for inaccurate interpretations.

Conclusions: Both GPT-3.5 and GPT-4 succeeded in ruling out abnormal CPET results. This tool could be utilized to differentiate between normal and abnormal results.

解释心肺运动试验的GPT -有希望的工具作为第一步,以确定正常的结果。
背景:心肺运动试验(CPET)用于评估不明原因呼吸困难。然而,它的解释需要的专业知识往往是不具备的。我们的目的是评估ChatGPT (GPT)在解释CPET结果中的效用。研究设计和方法:本横断面研究包括150例接受CPET的患者。两位肺科专家将结果分为正常或异常(心血管、肺部或其他运动限制),这是金标准。GPT版本3.5 (GPT-3.5)和4 (GPT-4)使用预定义的结构化输入分析相同的数据。结果:GPT-3.5正确解释67%的病例。它在识别正常CPET结果方面的灵敏度为75%,特异性为98%。GPT-3.5对于异常CPET测试有不同的结果,这取决于限制病因。相比之下,GPT-4在解释异常测试方面表现出改善,对呼吸和心血管限制的敏感性分别为83%和92%。结合两种人工智能模型的正常CPET解释,灵敏度为91%,特异性为98%。低工作速率和峰值耗氧量是不准确解释的独立预测因子。结论:GPT-3.5和GPT-4均能成功排除异常CPET结果。该工具可用于区分正常和异常结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信