The logarithmic memristor-based Bayesian machine.

Clément Turck, Kamel-Eddine Harabi, Adrien Pontlevy, Théo Ballet, Tifenn Hirtzlin, Elisa Vianello, Raphaël Laurent, Jacques Droulez, Pierre Bessière, Marc Bocquet, Jean-Michel Portal, Damien Querlioz
{"title":"The logarithmic memristor-based Bayesian machine.","authors":"Clément Turck, Kamel-Eddine Harabi, Adrien Pontlevy, Théo Ballet, Tifenn Hirtzlin, Elisa Vianello, Raphaël Laurent, Jacques Droulez, Pierre Bessière, Marc Bocquet, Jean-Michel Portal, Damien Querlioz","doi":"10.1038/s44172-025-00360-2","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for explainable and energy-efficient artificial intelligence (AI) systems for edge computing has led to growing interest in electronic systems dedicated to Bayesian inference. Traditional designs of such systems often rely on stochastic computing, which offers high energy efficiency but suffers from latency issues and struggles with low-probability values. Here, we introduce the logarithmic memristor-based Bayesian machine, an innovative design that leverages the unique properties of memristors and logarithmic computing as an alternative to stochastic computing. We present a prototype machine fabricated in a hybrid CMOS/hafnium-oxide memristor process. We validate the versatility and robustness of our system through experimental validation and extensive simulations in two distinct applications: gesture recognition and sleep stage classification. The logarithmic approach simplifies the computational model by converting multiplications into additions and enhances the handling of low-probability events, which are crucial in time-dependent tasks. Our results demonstrate that the logarithmic Bayesian machine achieves superior performance in terms of accuracy and energy efficiency compared to its stochastic counterpart, particularly in scenarios involving complex probabilistic models. This approach enables the development of energy-efficient and reliable AI systems for edge devices.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"35"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00360-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for explainable and energy-efficient artificial intelligence (AI) systems for edge computing has led to growing interest in electronic systems dedicated to Bayesian inference. Traditional designs of such systems often rely on stochastic computing, which offers high energy efficiency but suffers from latency issues and struggles with low-probability values. Here, we introduce the logarithmic memristor-based Bayesian machine, an innovative design that leverages the unique properties of memristors and logarithmic computing as an alternative to stochastic computing. We present a prototype machine fabricated in a hybrid CMOS/hafnium-oxide memristor process. We validate the versatility and robustness of our system through experimental validation and extensive simulations in two distinct applications: gesture recognition and sleep stage classification. The logarithmic approach simplifies the computational model by converting multiplications into additions and enhances the handling of low-probability events, which are crucial in time-dependent tasks. Our results demonstrate that the logarithmic Bayesian machine achieves superior performance in terms of accuracy and energy efficiency compared to its stochastic counterpart, particularly in scenarios involving complex probabilistic models. This approach enables the development of energy-efficient and reliable AI systems for edge devices.

基于对数记忆电阻的贝叶斯机。
边缘计算对可解释和节能的人工智能(AI)系统的需求导致人们对专用于贝叶斯推理的电子系统的兴趣日益浓厚。这类系统的传统设计通常依赖于随机计算,它提供了高能效,但存在延迟问题,并与低概率值作斗争。在这里,我们介绍了基于对数忆阻器的贝叶斯机,这是一种创新的设计,利用了忆阻器和对数计算的独特特性,作为随机计算的替代方案。我们提出了一种混合CMOS/铪氧化物记忆电阻制程的原型机。我们通过实验验证和在两个不同的应用中广泛的模拟来验证我们系统的多功能性和鲁棒性:手势识别和睡眠阶段分类。对数方法通过将乘法转换为加法简化了计算模型,并增强了对低概率事件的处理,这在依赖时间的任务中至关重要。我们的研究结果表明,对数贝叶斯机在精度和能源效率方面比其随机对应物取得了卓越的性能,特别是在涉及复杂概率模型的场景中。这种方法可以为边缘设备开发节能可靠的人工智能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信