Arash Maghsoudi, Amir Sharafkhaneh, Mehrnaz Azarian, Amin Ramezani, Max Hirshkowitz, Javad Razjouyan
{"title":"A case study on generative artificial intelligence to extract the fundamental sleep parameters from polysomnography notes.","authors":"Arash Maghsoudi, Amir Sharafkhaneh, Mehrnaz Azarian, Amin Ramezani, Max Hirshkowitz, Javad Razjouyan","doi":"10.5664/jcsm.11594","DOIUrl":null,"url":null,"abstract":"<p><p>Generative artificial intelligence (AI) utilizing transformer technology is widely seen as a groundbreaking advancement in applied artificial intelligence. The technology creates a unique opportunity to extract unstructured data from medical notes. In the current experiments, we extracted fundamental sleep parameters from polysomnography (PSG) notes of veterans in the Corporate Data Warehouse (CDW) national database using large language models. The \"SOLAR-10.7B-Instruct\" model extracted values associated with total sleep time (TST), sleep onset latency (SOL), and sleep efficiency (SE) from the PSG notes. The model's performance was evaluated using 464 human annotated notes. The analysis showed close accuracy for the large language model (LLM) compared to the human TST and SE extraction, and a considerable accuracy improvement (7.6%) in extracting SOL for the machine compared to human annotation. The LLM shows negligible hallucination (no more than 3.6%), and it has the capability to perform complicated reasoning to extract the desired sleep parameter.</p>","PeriodicalId":50233,"journal":{"name":"Journal of Clinical Sleep Medicine","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Sleep Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5664/jcsm.11594","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Generative artificial intelligence (AI) utilizing transformer technology is widely seen as a groundbreaking advancement in applied artificial intelligence. The technology creates a unique opportunity to extract unstructured data from medical notes. In the current experiments, we extracted fundamental sleep parameters from polysomnography (PSG) notes of veterans in the Corporate Data Warehouse (CDW) national database using large language models. The "SOLAR-10.7B-Instruct" model extracted values associated with total sleep time (TST), sleep onset latency (SOL), and sleep efficiency (SE) from the PSG notes. The model's performance was evaluated using 464 human annotated notes. The analysis showed close accuracy for the large language model (LLM) compared to the human TST and SE extraction, and a considerable accuracy improvement (7.6%) in extracting SOL for the machine compared to human annotation. The LLM shows negligible hallucination (no more than 3.6%), and it has the capability to perform complicated reasoning to extract the desired sleep parameter.
期刊介绍:
Journal of Clinical Sleep Medicine focuses on clinical sleep medicine. Its emphasis is publication of papers with direct applicability and/or relevance to the clinical practice of sleep medicine. This includes clinical trials, clinical reviews, clinical commentary and debate, medical economic/practice perspectives, case series and novel/interesting case reports. In addition, the journal will publish proceedings from conferences, workshops and symposia sponsored by the American Academy of Sleep Medicine or other organizations related to improving the practice of sleep medicine.