Hydroperoxide-Independent Generation of Spin Trapping Artifacts by Quinones and DMPO: Implications for Radical Identification in Quinone-Related Reactions.

Environment & Health Pub Date : 2024-10-22 eCollection Date: 2025-02-21 DOI:10.1021/envhealth.4c00142
Lingli Wang, Jinhui Cao, Pu Wang, Yu Fu, Jialin Chen, Zhaohui Wang
{"title":"Hydroperoxide-Independent Generation of Spin Trapping Artifacts by Quinones and DMPO: Implications for Radical Identification in Quinone-Related Reactions.","authors":"Lingli Wang, Jinhui Cao, Pu Wang, Yu Fu, Jialin Chen, Zhaohui Wang","doi":"10.1021/envhealth.4c00142","DOIUrl":null,"url":null,"abstract":"<p><p>Quinones, as highly redox active molecules in biology, are believed to react with hydroperoxides to produce highly reactive <sup>•</sup>OH, assuming that radical adducts are exclusively formed by the addition of free radicals to the spin trap as detected by the electron paramagnetic resonance (EPR) methodology. Here, direct formation of the same DMPO adduct as that formed by genuine radical trapping of <sup>•</sup>OH is discovered, while quinones (i.e., 1,4-benzoquinone (BQ), methyl-BQ (2-Me-BQ, 2,5-Me-BQ, 2,6-Me-BQ), and chlorinated-BQ (2-Cl-BQ, 2,5-Cl-BQ, 2,6-Cl-BQ)) meet with the spin trap 5,5-dimethyl-1-pyrroline <i>N</i>-oxide (DMPO), independent of peroxides. According to differences in alcohol-derived adducts (e.g., DMPO-CH<sub>2</sub>OH or DMPO-OCH<sub>3</sub>) while alcohol is attacked by <sup>•</sup>OH or DMPO<sup>•+</sup>, a nonradical mechanism is proposed for the BQ/DMPO system. This is further evidenced by the mass spectrometry data in which DMPO-OCH<sub>3</sub> has been identified in BQ (or chlorinated-BQ)/DMPO systems. <sup>17</sup>O incorporation experiments verify that hydroxyl oxygen in DMPO-OH originates from water. The DMPO-OH adduct might be formed via direct oxidation and water substitution or one-electron oxidation and nucleophilic addition. This study provides a peroxide-independent alternative route leading to DMPO-OH adduct in quinone-based systems, which has profound implications for assessing adverse health effects and even biogeochemical impacts of quinones if EPR is applied.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 2","pages":"143-153"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/envhealth.4c00142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quinones, as highly redox active molecules in biology, are believed to react with hydroperoxides to produce highly reactive OH, assuming that radical adducts are exclusively formed by the addition of free radicals to the spin trap as detected by the electron paramagnetic resonance (EPR) methodology. Here, direct formation of the same DMPO adduct as that formed by genuine radical trapping of OH is discovered, while quinones (i.e., 1,4-benzoquinone (BQ), methyl-BQ (2-Me-BQ, 2,5-Me-BQ, 2,6-Me-BQ), and chlorinated-BQ (2-Cl-BQ, 2,5-Cl-BQ, 2,6-Cl-BQ)) meet with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), independent of peroxides. According to differences in alcohol-derived adducts (e.g., DMPO-CH2OH or DMPO-OCH3) while alcohol is attacked by OH or DMPO•+, a nonradical mechanism is proposed for the BQ/DMPO system. This is further evidenced by the mass spectrometry data in which DMPO-OCH3 has been identified in BQ (or chlorinated-BQ)/DMPO systems. 17O incorporation experiments verify that hydroxyl oxygen in DMPO-OH originates from water. The DMPO-OH adduct might be formed via direct oxidation and water substitution or one-electron oxidation and nucleophilic addition. This study provides a peroxide-independent alternative route leading to DMPO-OH adduct in quinone-based systems, which has profound implications for assessing adverse health effects and even biogeochemical impacts of quinones if EPR is applied.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environment & Health
Environment & Health 环境科学、健康科学-
自引率
0.00%
发文量
0
期刊介绍: Environment & Health a peer-reviewed open access journal is committed to exploring the relationship between the environment and human health.As a premier journal for multidisciplinary research Environment & Health reports the health consequences for individuals and communities of changing and hazardous environmental factors. In supporting the UN Sustainable Development Goals the journal aims to help formulate policies to create a healthier world.Topics of interest include but are not limited to:Air water and soil pollutionExposomicsEnvironmental epidemiologyInnovative analytical methodology and instrumentation (multi-omics non-target analysis effect-directed analysis high-throughput screening etc.)Environmental toxicology (endocrine disrupting effect neurotoxicity alternative toxicology computational toxicology epigenetic toxicology etc.)Environmental microbiology pathogen and environmental transmission mechanisms of diseasesEnvironmental modeling bioinformatics and artificial intelligenceEmerging contaminants (including plastics engineered nanomaterials etc.)Climate change and related health effectHealth impacts of energy evolution and carbon neutralizationFood and drinking water safetyOccupational exposure and medicineInnovations in environmental technologies for better healthPolicies and international relations concerned with environmental health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信