Boosting disease resistance in Solanum melongena L. (eggplant) against Alternaria solani: the synergistic effect of biocontrol Acinetobacter sp. and indole-3-acetic acid (IAA).

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohammad Danish, Mohammad Shahid, Zaryab Shafi, Mohammad Tarique Zeyad, Mohammad Abul Farah, Khalid Mashay Al-Anazi, Lukman Ahamad
{"title":"Boosting disease resistance in Solanum melongena L. (eggplant) against Alternaria solani: the synergistic effect of biocontrol Acinetobacter sp. and indole-3-acetic acid (IAA).","authors":"Mohammad Danish, Mohammad Shahid, Zaryab Shafi, Mohammad Tarique Zeyad, Mohammad Abul Farah, Khalid Mashay Al-Anazi, Lukman Ahamad","doi":"10.1007/s11274-025-04282-1","DOIUrl":null,"url":null,"abstract":"<p><p>Alternaria solani causes early blight disease in eggplants, threatening production and leading to significant economic losses. Fungicides are used to control fungal diseases, but their overuse raises resistance concerns. Finding novel, eco-friendly biocontrol agents is therefore a solution for the future. The coordination between antagonistic bacterial agents and plant growth hormones in defense responses against fungal pathogens are crucial. This study assessed biocontrol potential of Acinetobacter sp. SCR-11 (Accession no. OR751536.1) and indole-3-acetic acid (IAA; 100 µM), singly and in combination, against A. solani in eggplants. Strain SCR-11 produced hydrogen cyanide (HCN; 5.7 µg mL⁻<sup>1</sup>), siderophore i.e. salicylic acid (14.7 µg mL⁻<sup>1</sup>), 2,3-dihydroxybenzoic acid (23.1 µg mL⁻<sup>1</sup>) and various extracellular lytic enzymes. Strain SCR-11 exhibited antagonistic activity by strongly inhibiting (82%) A. solani. Acinetobacter sp. inoculation and IAA treatment enhanced growth, biomass, and leaf pigments of A. solani-diseased eggplants, with effectiveness in order: SCR-11 + IAA > SCR-11 > IAA >. The combined treatments (SCR-11 + IAA) most effectively increased total soluble protein (62.5%), carbohydrate (60%), total soluble sugar (81%), and phenol (74%) in A. solani-infected eggplant. Biocontrol agent and IAA application significantly (p ≤ 0.05) reduced proline and malondialdehyde (MDA) levels, alleviating oxidative stress in A. solani-diseased eggplant. The SCR-11 + IAA treatment significantly reduced the percent disease index (71%) and increased protection (69%) in diseased eggplant. The Acinetobacter sp. and IAA coordination enhanced disease resistance in A. solani-infected eggplants by boosting defense enzyme activities (SOD, POD, PAL, and β-1, 3 glucanase), significantly protecting plants from pathogen attack. At harvest, soil populations of A. solani decreased, while SCR-11 populations increased significantly. Acinetobacter sp. and IAA work synergistically through pathogen suppression, plant growth promotion, and induction of plant defense responses. Thus, applying antagonistic PGPR strain with exogenous IAA enhances eggplant resistance to A. solani, providing an environmentally friendly agricultural solution.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"85"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04282-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alternaria solani causes early blight disease in eggplants, threatening production and leading to significant economic losses. Fungicides are used to control fungal diseases, but their overuse raises resistance concerns. Finding novel, eco-friendly biocontrol agents is therefore a solution for the future. The coordination between antagonistic bacterial agents and plant growth hormones in defense responses against fungal pathogens are crucial. This study assessed biocontrol potential of Acinetobacter sp. SCR-11 (Accession no. OR751536.1) and indole-3-acetic acid (IAA; 100 µM), singly and in combination, against A. solani in eggplants. Strain SCR-11 produced hydrogen cyanide (HCN; 5.7 µg mL⁻1), siderophore i.e. salicylic acid (14.7 µg mL⁻1), 2,3-dihydroxybenzoic acid (23.1 µg mL⁻1) and various extracellular lytic enzymes. Strain SCR-11 exhibited antagonistic activity by strongly inhibiting (82%) A. solani. Acinetobacter sp. inoculation and IAA treatment enhanced growth, biomass, and leaf pigments of A. solani-diseased eggplants, with effectiveness in order: SCR-11 + IAA > SCR-11 > IAA >. The combined treatments (SCR-11 + IAA) most effectively increased total soluble protein (62.5%), carbohydrate (60%), total soluble sugar (81%), and phenol (74%) in A. solani-infected eggplant. Biocontrol agent and IAA application significantly (p ≤ 0.05) reduced proline and malondialdehyde (MDA) levels, alleviating oxidative stress in A. solani-diseased eggplant. The SCR-11 + IAA treatment significantly reduced the percent disease index (71%) and increased protection (69%) in diseased eggplant. The Acinetobacter sp. and IAA coordination enhanced disease resistance in A. solani-infected eggplants by boosting defense enzyme activities (SOD, POD, PAL, and β-1, 3 glucanase), significantly protecting plants from pathogen attack. At harvest, soil populations of A. solani decreased, while SCR-11 populations increased significantly. Acinetobacter sp. and IAA work synergistically through pathogen suppression, plant growth promotion, and induction of plant defense responses. Thus, applying antagonistic PGPR strain with exogenous IAA enhances eggplant resistance to A. solani, providing an environmentally friendly agricultural solution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信