Molecular Pathology Methods to Characterize Biodistribution and Pharmacodynamics of the Oncolytic Virus VSV-GP in a Nonclinical Tumor Model.

IF 1.4 4区 医学 Q3 PATHOLOGY
Andrea Matter, Karol Budzik, Saurin Mehta, Kathleen Hoyt, Richard Dambra, Adam Vigil, Joseph Ashour, Ernest Raymond, Elizabeth Clark, Charles Wood
{"title":"Molecular Pathology Methods to Characterize Biodistribution and Pharmacodynamics of the Oncolytic Virus VSV-GP in a Nonclinical Tumor Model.","authors":"Andrea Matter, Karol Budzik, Saurin Mehta, Kathleen Hoyt, Richard Dambra, Adam Vigil, Joseph Ashour, Ernest Raymond, Elizabeth Clark, Charles Wood","doi":"10.1177/01926233241303904","DOIUrl":null,"url":null,"abstract":"<p><p>Replication-competent oncolytic virus (OV) therapies are a promising new modality for cancer treatment. However, they pose unique challenges for preclinical assessment, due in part to their tumor specificity and ability to self-replicate in vivo. Understanding biodistribution, immune cell responses, and potential effects of intratumoral replication on these outcomes are important aspects of the nonclinical profile for OVs. Herein, a single intravenous dose of vesicular stomatitis virus pseudotyped with the glycoprotein of lymphocytic choriomeningitis virus (VSV-GP), or a cargo-expressing variant (VSV-GP-[cargo]), was examined in both tumor-free and CT26.CL25.IFNAR<sup>-/-</sup> syngeneic tumor-bearing mouse models. Biodistribution and immune cell responses were characterized using different molecular pathology methods, including a strand-specific in situ hybridization method to differentiate administered viral genomes from replicated or transcribed viral anti-genome RNA. We identified distinct patterns of viral biodistribution and replication across tumor and nontumor sites but no major differences in biodistribution, off-tumor cell tropism, or immune cell responses between tumor-free and tumor-bearing mouse models. Our findings characterize key cellular changes following systemic exposure to VSV-GP, provide a better understanding of a nonclinical permissive tumor model for OV assessment, and demonstrate how current molecular pathology methods can provide a bridge between traditional biodistribution and pathology readouts.</p>","PeriodicalId":23113,"journal":{"name":"Toxicologic Pathology","volume":"53 1","pages":"65-82"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/01926233241303904","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Replication-competent oncolytic virus (OV) therapies are a promising new modality for cancer treatment. However, they pose unique challenges for preclinical assessment, due in part to their tumor specificity and ability to self-replicate in vivo. Understanding biodistribution, immune cell responses, and potential effects of intratumoral replication on these outcomes are important aspects of the nonclinical profile for OVs. Herein, a single intravenous dose of vesicular stomatitis virus pseudotyped with the glycoprotein of lymphocytic choriomeningitis virus (VSV-GP), or a cargo-expressing variant (VSV-GP-[cargo]), was examined in both tumor-free and CT26.CL25.IFNAR-/- syngeneic tumor-bearing mouse models. Biodistribution and immune cell responses were characterized using different molecular pathology methods, including a strand-specific in situ hybridization method to differentiate administered viral genomes from replicated or transcribed viral anti-genome RNA. We identified distinct patterns of viral biodistribution and replication across tumor and nontumor sites but no major differences in biodistribution, off-tumor cell tropism, or immune cell responses between tumor-free and tumor-bearing mouse models. Our findings characterize key cellular changes following systemic exposure to VSV-GP, provide a better understanding of a nonclinical permissive tumor model for OV assessment, and demonstrate how current molecular pathology methods can provide a bridge between traditional biodistribution and pathology readouts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicologic Pathology
Toxicologic Pathology 医学-病理学
CiteScore
4.70
自引率
20.00%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Toxicologic Pathology is dedicated to the promotion of human, animal, and environmental health through the dissemination of knowledge, techniques, and guidelines to enhance the understanding and practice of toxicologic pathology. Toxicologic Pathology, the official journal of the Society of Toxicologic Pathology, will publish Original Research Articles, Symposium Articles, Review Articles, Meeting Reports, New Techniques, and Position Papers that are relevant to toxicologic pathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信