De novo missense variants in the RPEL3 domain of PHACTR4 in individuals with overlapping congenital anomalies.

IF 3.3 Q2 GENETICS & HEREDITY
Erin Torti, Sureni V Mullegama, Isabelle De Bie, Angelique Mercier, Deanna Alexis Carere, Leandra Folk, Jane Juusola, Kristin G Monaghan, Ingrid M Wentzensen, Olivia L Redlich, Adi Reich, Bobbi McGivern
{"title":"De novo missense variants in the RPEL3 domain of PHACTR4 in individuals with overlapping congenital anomalies.","authors":"Erin Torti, Sureni V Mullegama, Isabelle De Bie, Angelique Mercier, Deanna Alexis Carere, Leandra Folk, Jane Juusola, Kristin G Monaghan, Ingrid M Wentzensen, Olivia L Redlich, Adi Reich, Bobbi McGivern","doi":"10.1016/j.xhgg.2025.100421","DOIUrl":null,"url":null,"abstract":"<p><p>PHACTR4 is proposed to play a role in embryonic development but has yet to be associated with human disease. Here, we report the detailed clinical features of two individuals for whom molecular diagnostic testing was undertaken at a large diagnostic laboratory and who were found to harbor rare, damaging de novo missense variants in the conserved RPEL3 domain of PHACTR4. We also present aggregate information on additional individuals in whom missense variants in the same PHACTR4 gene region were detected. All presented with overlapping phenotypes. Features present in at least half of these individuals included cleft palate, ophthalmologic abnormalities, hearing impairment, dysmorphic facial features, digital anomalies, renal/urinary anomalies, growth delay, microcephaly, abnormal brain imaging, and neurodevelopmental abnormalities; some individuals had additional unique findings as well. The proposed cellular function of PHACTR4 and information from related genes with variants in an RPEL domain suggest that PHACTR4 is a promising candidate gene for human disease. We hope that this report will promote additional research interest in the PHACTR4 gene and lead to the publication of additional cases, to potentially establish a causative relationship and to further delineate the phenotypic and variant spectrum of a PHACTR4-related disorder.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100421"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964616/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

PHACTR4 is proposed to play a role in embryonic development but has yet to be associated with human disease. Here, we report the detailed clinical features of two individuals for whom molecular diagnostic testing was undertaken at a large diagnostic laboratory and who were found to harbor rare, damaging de novo missense variants in the conserved RPEL3 domain of PHACTR4. We also present aggregate information on additional individuals in whom missense variants in the same PHACTR4 gene region were detected. All presented with overlapping phenotypes. Features present in at least half of these individuals included cleft palate, ophthalmologic abnormalities, hearing impairment, dysmorphic facial features, digital anomalies, renal/urinary anomalies, growth delay, microcephaly, abnormal brain imaging, and neurodevelopmental abnormalities; some individuals had additional unique findings as well. The proposed cellular function of PHACTR4 and information from related genes with variants in an RPEL domain suggest that PHACTR4 is a promising candidate gene for human disease. We hope that this report will promote additional research interest in the PHACTR4 gene and lead to the publication of additional cases, to potentially establish a causative relationship and to further delineate the phenotypic and variant spectrum of a PHACTR4-related disorder.

重叠先天性异常个体中PHACTR4 RPEL3结构域的新生错义变异
PHACTR4被认为在胚胎发育中发挥作用,但尚未与人类疾病相关。在这里,我们报告了两个个体的详细临床特征,他们在一个大型诊断实验室进行了分子诊断测试,并在PHACTR4的保守RPEL3结构域发现了罕见的,破坏性的新生错义变体。我们还提供了在相同PHACTR4基因区域检测到错义变异的其他个体的汇总信息。所有人都表现出重叠的表型。这些患者中至少有一半的特征包括腭裂、眼科异常、听力障碍、面部畸形、数字异常、肾/尿异常、生长迟缓、小头畸形、脑成像异常和神经发育异常;有些人还有其他独特的发现。PHACTR4的细胞功能和来自RPEL结构域变异相关基因的信息表明,PHACTR4是一个有希望的人类疾病候选基因。我们希望这篇报道能够促进对PHACTR4基因的更多研究兴趣,并导致更多病例的发表,以潜在地建立病因关系,并进一步描绘PHACTR4相关疾病的表型和变异谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信