Nuclear localization and transactivation of SYS-1/β-catenin is the result of serial gene duplications and subfunctionalizations.

IF 2.1 4区 生物学 Q3 DEVELOPMENTAL BIOLOGY
Arielle K Wolf, Lori C Adams-Phillips, Amanda N D Adams, Albert J Erives, Bryan T Phillips
{"title":"Nuclear localization and transactivation of SYS-1/β-catenin is the result of serial gene duplications and subfunctionalizations.","authors":"Arielle K Wolf, Lori C Adams-Phillips, Amanda N D Adams, Albert J Erives, Bryan T Phillips","doi":"10.1016/j.cdev.2025.204013","DOIUrl":null,"url":null,"abstract":"<p><p>β-catenin is a highly conserved multifunctional protein capable of mediating cell adhesion via E-cadherin and transactivation of target genes of the canonical Wnt signaling pathway. The nematode, C. elegans contains four paralogs of β-catenin which are highly specific in their functions. Though similar in overall structure, the four beta-catenins are functionally distinct, each regulating different aspects of development. Of the four, SYS-1 is a key player in Wnt dependent asymmetric cell division (ACD). In ACD, a polarized mother will give rise to a daughter with high nuclear SYS-1 and another with low nuclear SYS-1. Despite sequence dissimilarity, SYS-1 shares a close structural resemblance with human β-catenin where it retains an unstructured amino-terminus (NTD) and 12 armadillo repeats. Using existing genome sequence data from several nematode species, we find that the four β-catenin paralogs result from 3 sequential gene duplications and neofunctionalizations during nematode evolution. SYS-1, however, lacks an unstructured carboxyl-terminus (CTD) that is essential for human β-catenin transactivation processes. This work supports the hypothesis that SYS-1 compensated for the lack of CTD by acquiring novel transactivation domains with cryptic nuclear localization signals in the NTD and the first four armadillo repeats, as shown by transactivation assays in worms and yeast. Furthermore, SYS-1 regulatory domains are not localized to the NTD as in canonical β-catenin and instead spans the entire length of the protein. Truncating SYS-1 abolishes the classical SYS-1 nuclear asymmetry, resulting in daughter cells with symmetrical SYS-1 truncation localization. A screen for SYS-1 physical interactors followed by in vivo SYS-1 localization analyses and effects on cell fate suggest that proper SYS-1 nuclear export is facilitated by XPO-1, while an interaction with IMB-3, an importin β-like protein, suggests import mechanisms. Interestingly, XPO-1 is especially required for lowering SYS-1 in the Wnt-unsignaled nucleus, suggesting a distinct mechanism for regulating asymmetric nuclear SYS-1. In summary, we provide insights on the mechanism of β-catenin evolution within nematodes and inform SYS-1 transactivation and nuclear transport mechanisms.</p>","PeriodicalId":29860,"journal":{"name":"Cells & Development","volume":" ","pages":"204013"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells & Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cdev.2025.204013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

β-catenin is a highly conserved multifunctional protein capable of mediating cell adhesion via E-cadherin and transactivation of target genes of the canonical Wnt signaling pathway. The nematode, C. elegans contains four paralogs of β-catenin which are highly specific in their functions. Though similar in overall structure, the four beta-catenins are functionally distinct, each regulating different aspects of development. Of the four, SYS-1 is a key player in Wnt dependent asymmetric cell division (ACD). In ACD, a polarized mother will give rise to a daughter with high nuclear SYS-1 and another with low nuclear SYS-1. Despite sequence dissimilarity, SYS-1 shares a close structural resemblance with human β-catenin where it retains an unstructured amino-terminus (NTD) and 12 armadillo repeats. Using existing genome sequence data from several nematode species, we find that the four β-catenin paralogs result from 3 sequential gene duplications and neofunctionalizations during nematode evolution. SYS-1, however, lacks an unstructured carboxyl-terminus (CTD) that is essential for human β-catenin transactivation processes. This work supports the hypothesis that SYS-1 compensated for the lack of CTD by acquiring novel transactivation domains with cryptic nuclear localization signals in the NTD and the first four armadillo repeats, as shown by transactivation assays in worms and yeast. Furthermore, SYS-1 regulatory domains are not localized to the NTD as in canonical β-catenin and instead spans the entire length of the protein. Truncating SYS-1 abolishes the classical SYS-1 nuclear asymmetry, resulting in daughter cells with symmetrical SYS-1 truncation localization. A screen for SYS-1 physical interactors followed by in vivo SYS-1 localization analyses and effects on cell fate suggest that proper SYS-1 nuclear export is facilitated by XPO-1, while an interaction with IMB-3, an importin β-like protein, suggests import mechanisms. Interestingly, XPO-1 is especially required for lowering SYS-1 in the Wnt-unsignaled nucleus, suggesting a distinct mechanism for regulating asymmetric nuclear SYS-1. In summary, we provide insights on the mechanism of β-catenin evolution within nematodes and inform SYS-1 transactivation and nuclear transport mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells & Development
Cells & Development DEVELOPMENTAL BIOLOGY-
CiteScore
3.70
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信