Computational study on the effect of thermal deformation of myocardium on lesion formation during radiofrequency ablation.

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Pei Xin Niu, Xiang Xiang Wang, Jing Jin Shen, Xiao Xiao Jin, Zhen Yu Zhou
{"title":"Computational study on the effect of thermal deformation of myocardium on lesion formation during radiofrequency ablation.","authors":"Pei Xin Niu, Xiang Xiang Wang, Jing Jin Shen, Xiao Xiao Jin, Zhen Yu Zhou","doi":"10.1177/09544119251321131","DOIUrl":null,"url":null,"abstract":"<p><p>Radiofrequency (RF) catheter ablation treats cardiac diseases by inducing thermal lesion of cardiac tissues through radiofrequency energy operating at around 500 kHz. The electromagnetic wavelength is significantly longer than the size of the radiofrequency active electrode, the tissue is heated through resistive heating. During thermal ablation, the coupled thermo-mechanical property of cardiac tissue influencing the contact area between the electrode and tissue plays a crucial role in the formation of thermal lesions, yet the literature often overlooks the effect of thermal deformation. This paper proposes a thermo-hyperelastic constitutive model for myocardium that models thermal contraction and expansion during ablation. Furthermore, a finite element model was established to investigate the effect of the electro-thermo-mechanical coupling property of myocardium on lesion formation under different contact forces. To ensure convergence, we solved the fully coupled electro-thermo-mechanical finite element model using the segregated step method. The computational results demonstrate that thermal deformation, which causes an expansion in the tissue-electrode contact area, increases lesion width and volume, while its influence on lesion depth is negligible. Specifically, after a 30-s ablation under contact forces of 0.1, 0.15, and 0.2 N, the lesion volume increased from 4.53, 7.66, and 10.62 mm<sup>3</sup> (without thermo-mechanical coupling) to 5.36, 8.33, and 13.34 mm<sup>3</sup> (with thermo-mechanical coupling), respectively. Similarly, the lesion width increased from 2.68, 3.12, and 3.44 mm to 2.78, 3.22, and 3.62 mm. Moreover, both thermal deformation and contact force exert a minimal effect on lesion formation time.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251321131"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251321131","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Radiofrequency (RF) catheter ablation treats cardiac diseases by inducing thermal lesion of cardiac tissues through radiofrequency energy operating at around 500 kHz. The electromagnetic wavelength is significantly longer than the size of the radiofrequency active electrode, the tissue is heated through resistive heating. During thermal ablation, the coupled thermo-mechanical property of cardiac tissue influencing the contact area between the electrode and tissue plays a crucial role in the formation of thermal lesions, yet the literature often overlooks the effect of thermal deformation. This paper proposes a thermo-hyperelastic constitutive model for myocardium that models thermal contraction and expansion during ablation. Furthermore, a finite element model was established to investigate the effect of the electro-thermo-mechanical coupling property of myocardium on lesion formation under different contact forces. To ensure convergence, we solved the fully coupled electro-thermo-mechanical finite element model using the segregated step method. The computational results demonstrate that thermal deformation, which causes an expansion in the tissue-electrode contact area, increases lesion width and volume, while its influence on lesion depth is negligible. Specifically, after a 30-s ablation under contact forces of 0.1, 0.15, and 0.2 N, the lesion volume increased from 4.53, 7.66, and 10.62 mm3 (without thermo-mechanical coupling) to 5.36, 8.33, and 13.34 mm3 (with thermo-mechanical coupling), respectively. Similarly, the lesion width increased from 2.68, 3.12, and 3.44 mm to 2.78, 3.22, and 3.62 mm. Moreover, both thermal deformation and contact force exert a minimal effect on lesion formation time.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信