Ambient outdoor heat and accelerated epigenetic aging among older adults in the US.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI:10.1126/sciadv.adr0616
Eun Young Choi, Jennifer A Ailshire
{"title":"Ambient outdoor heat and accelerated epigenetic aging among older adults in the US.","authors":"Eun Young Choi, Jennifer A Ailshire","doi":"10.1126/sciadv.adr0616","DOIUrl":null,"url":null,"abstract":"<p><p>Extreme heat is well-documented to adversely affect health and mortality, but its link to biological aging-a precursor of the morbidity and mortality process-remains unclear. This study examines the association between ambient outdoor heat and epigenetic aging in a nationally representative sample of US adults aged 56+ (<i>N</i> = 3686). The number of heat days in neighborhoods is calculated using the heat index, covering time windows from the day of blood collection to 6 years prior. Multilevel regression models are used to predict PCPhenoAge acceleration, PCGrimAge acceleration, and DunedinPACE. More heat days over short- and mid-term windows are associated with increased PCPhenoAge acceleration (e.g., <i>B</i><sub>prior7-dayCaution+heat</sub>: 1.07 years). Longer-term heat is associated with all clocks (e.g., <i>B</i><sub>prior1-yearExtremecaution+heat</sub>: 2.48 years for PCPhenoAge, <i>B</i><sub>prior1-yearExtremecaution+heat</sub>: 1.09 year for PCGrimAge, and <i>B</i><sub>prior6-yearExtremecaution+heat</sub>: 0.05 years for DunedinPACE). Subgroup analyses show no strong evidence for increased vulnerability by sociodemographic factors. These findings provide insights into the biological underpinnings linking heat to aging-related morbidity and mortality risks.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":"eadr0616"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr0616","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme heat is well-documented to adversely affect health and mortality, but its link to biological aging-a precursor of the morbidity and mortality process-remains unclear. This study examines the association between ambient outdoor heat and epigenetic aging in a nationally representative sample of US adults aged 56+ (N = 3686). The number of heat days in neighborhoods is calculated using the heat index, covering time windows from the day of blood collection to 6 years prior. Multilevel regression models are used to predict PCPhenoAge acceleration, PCGrimAge acceleration, and DunedinPACE. More heat days over short- and mid-term windows are associated with increased PCPhenoAge acceleration (e.g., Bprior7-dayCaution+heat: 1.07 years). Longer-term heat is associated with all clocks (e.g., Bprior1-yearExtremecaution+heat: 2.48 years for PCPhenoAge, Bprior1-yearExtremecaution+heat: 1.09 year for PCGrimAge, and Bprior6-yearExtremecaution+heat: 0.05 years for DunedinPACE). Subgroup analyses show no strong evidence for increased vulnerability by sociodemographic factors. These findings provide insights into the biological underpinnings linking heat to aging-related morbidity and mortality risks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信