Gyro-spintronic material science using vorticity gradient in solids.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2024-11-21 eCollection Date: 2025-01-01 DOI:10.1080/14686996.2024.2428153
Yukio Nozaki, Hiroaki Sukegawa, Shinichi Watanabe, Seiji Yunoki, Taisuke Horaguchi, Hayato Nakayama, Kazuto Yamanoi, Zhenchao Wen, Cong He, Jieyuan Song, Tadakatsu Ohkubo, Seiji Mitani, Kazuki Maezawa, Daichi Nishikawa, Shun Fujii, Mamoru Matsuo, Junji Fujimoto, Sadamichi Maekawa
{"title":"Gyro-spintronic material science using vorticity gradient in solids.","authors":"Yukio Nozaki, Hiroaki Sukegawa, Shinichi Watanabe, Seiji Yunoki, Taisuke Horaguchi, Hayato Nakayama, Kazuto Yamanoi, Zhenchao Wen, Cong He, Jieyuan Song, Tadakatsu Ohkubo, Seiji Mitani, Kazuki Maezawa, Daichi Nishikawa, Shun Fujii, Mamoru Matsuo, Junji Fujimoto, Sadamichi Maekawa","doi":"10.1080/14686996.2024.2428153","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel method for generating spin currents using the gyromagnetic effect, a phenomenon discovered over a century ago. This effect, crucial for understanding the origins of magnetism, enables the coupling between various macroscopic rotational motions and electron spins. While higher rotational speeds intensify the effect, conventional mechanical rotations, typically, below 10,000 RPM, produce negligible results comparable to geomagnetic fluctuations, limiting applied research. Our studies demonstrate that spin current generation comparable to that of rare metals can be achieved through atomic rotations induced by GHz-range surface acoustic waves and the rotational motion of conduction electrons in metallic thin films with nanoscale gradient modulation of electrical conductivity. These effects, termed the acoustic gyromagnetic effect and the current-vorticity gyromagnetic effect, are significant in different contexts. The acoustic gyromagnetic effect is notable in high-conductivity materials like aluminum and copper, which are more abundant than conventional spintronics materials with strong spin-orbit interactions (SOIs). Conversely, the current-vorticity gyromagnetic effect requires a large conductivity gradient to produce current vorticity efficiently. This is achieved by using composition gradient structures from highly conductive metals to poorly conductive oxides or semiconductors. Consequently, unlike traditional strong-SOI materials, we can create highly efficient spin current generators with low energy dissipation due to reduced Joule loss.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2428153"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2428153","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel method for generating spin currents using the gyromagnetic effect, a phenomenon discovered over a century ago. This effect, crucial for understanding the origins of magnetism, enables the coupling between various macroscopic rotational motions and electron spins. While higher rotational speeds intensify the effect, conventional mechanical rotations, typically, below 10,000 RPM, produce negligible results comparable to geomagnetic fluctuations, limiting applied research. Our studies demonstrate that spin current generation comparable to that of rare metals can be achieved through atomic rotations induced by GHz-range surface acoustic waves and the rotational motion of conduction electrons in metallic thin films with nanoscale gradient modulation of electrical conductivity. These effects, termed the acoustic gyromagnetic effect and the current-vorticity gyromagnetic effect, are significant in different contexts. The acoustic gyromagnetic effect is notable in high-conductivity materials like aluminum and copper, which are more abundant than conventional spintronics materials with strong spin-orbit interactions (SOIs). Conversely, the current-vorticity gyromagnetic effect requires a large conductivity gradient to produce current vorticity efficiently. This is achieved by using composition gradient structures from highly conductive metals to poorly conductive oxides or semiconductors. Consequently, unlike traditional strong-SOI materials, we can create highly efficient spin current generators with low energy dissipation due to reduced Joule loss.

利用固体涡旋梯度的陀螺自旋电子材料科学。
我们提出了一种利用一个多世纪前发现的回旋磁效应产生自旋电流的新方法。这种效应对于理解磁性的起源至关重要,它使各种宏观旋转运动和电子自旋之间的耦合成为可能。虽然较高的转速会加剧这种影响,但传统的机械旋转,通常低于10,000 RPM,产生的结果与地磁波动相比微不足道,限制了应用研究。我们的研究表明,在纳米级电导率梯度调制的金属薄膜中,通过由ghz范围的表面声波引起的原子旋转和传导电子的旋转运动,可以产生与稀有金属相当的自旋电流。这些效应,被称为声回旋磁效应和电流涡度回旋磁效应,在不同的背景下是重要的。在高导电性材料如铝和铜中,声回旋磁效应是显著的,它们比具有强自旋轨道相互作用(SOIs)的传统自旋电子学材料更为丰富。相反,电流涡度旋磁效应需要较大的电导率梯度才能有效地产生电流涡度。这是通过使用从高导电性金属到低导电性氧化物或半导体的成分梯度结构来实现的。因此,与传统的强soi材料不同,我们可以创造出高效的自旋电流发生器,由于减少了焦耳损耗,其能量耗散低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信