{"title":"Gyro-spintronic material science using vorticity gradient in solids.","authors":"Yukio Nozaki, Hiroaki Sukegawa, Shinichi Watanabe, Seiji Yunoki, Taisuke Horaguchi, Hayato Nakayama, Kazuto Yamanoi, Zhenchao Wen, Cong He, Jieyuan Song, Tadakatsu Ohkubo, Seiji Mitani, Kazuki Maezawa, Daichi Nishikawa, Shun Fujii, Mamoru Matsuo, Junji Fujimoto, Sadamichi Maekawa","doi":"10.1080/14686996.2024.2428153","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel method for generating spin currents using the gyromagnetic effect, a phenomenon discovered over a century ago. This effect, crucial for understanding the origins of magnetism, enables the coupling between various macroscopic rotational motions and electron spins. While higher rotational speeds intensify the effect, conventional mechanical rotations, typically, below 10,000 RPM, produce negligible results comparable to geomagnetic fluctuations, limiting applied research. Our studies demonstrate that spin current generation comparable to that of rare metals can be achieved through atomic rotations induced by GHz-range surface acoustic waves and the rotational motion of conduction electrons in metallic thin films with nanoscale gradient modulation of electrical conductivity. These effects, termed the acoustic gyromagnetic effect and the current-vorticity gyromagnetic effect, are significant in different contexts. The acoustic gyromagnetic effect is notable in high-conductivity materials like aluminum and copper, which are more abundant than conventional spintronics materials with strong spin-orbit interactions (SOIs). Conversely, the current-vorticity gyromagnetic effect requires a large conductivity gradient to produce current vorticity efficiently. This is achieved by using composition gradient structures from highly conductive metals to poorly conductive oxides or semiconductors. Consequently, unlike traditional strong-SOI materials, we can create highly efficient spin current generators with low energy dissipation due to reduced Joule loss.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2428153"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2428153","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel method for generating spin currents using the gyromagnetic effect, a phenomenon discovered over a century ago. This effect, crucial for understanding the origins of magnetism, enables the coupling between various macroscopic rotational motions and electron spins. While higher rotational speeds intensify the effect, conventional mechanical rotations, typically, below 10,000 RPM, produce negligible results comparable to geomagnetic fluctuations, limiting applied research. Our studies demonstrate that spin current generation comparable to that of rare metals can be achieved through atomic rotations induced by GHz-range surface acoustic waves and the rotational motion of conduction electrons in metallic thin films with nanoscale gradient modulation of electrical conductivity. These effects, termed the acoustic gyromagnetic effect and the current-vorticity gyromagnetic effect, are significant in different contexts. The acoustic gyromagnetic effect is notable in high-conductivity materials like aluminum and copper, which are more abundant than conventional spintronics materials with strong spin-orbit interactions (SOIs). Conversely, the current-vorticity gyromagnetic effect requires a large conductivity gradient to produce current vorticity efficiently. This is achieved by using composition gradient structures from highly conductive metals to poorly conductive oxides or semiconductors. Consequently, unlike traditional strong-SOI materials, we can create highly efficient spin current generators with low energy dissipation due to reduced Joule loss.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.