Gerald S Zavorsky, Sherif Elkinany, Abdullah Alismail, Suman B Thapamagar, Michael H Terry, James D Anholm, Paresh C Giri
{"title":"Examining discordance in spirometry reference equations: A retrospective study.","authors":"Gerald S Zavorsky, Sherif Elkinany, Abdullah Alismail, Suman B Thapamagar, Michael H Terry, James D Anholm, Paresh C Giri","doi":"10.14814/phy2.70212","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate discordance, binary classification, and model fit between race-predicted and race-neutral spirometry prediction equations. Spirometry data from 9506 patients (18-95 years old) self-identifying as White, Black, or Hispanic were analyzed, focusing on the lower limit of normal (LLN). Best-fit prediction equations were developed from 3771 patients with normal spirometry, using Bayesian Information Criterion (BIC) to compare models with and without race as a covariate. Results showed that including race as a covariate improved model fit, reducing BIC by at least ten units compared to Race-Neutral equations. Discordance between race-specific and race-neutral equations for detecting airway obstruction and restrictive spirometry patterns ranged from 4% to 13%. Using race-neutral equations resulted in false discovery rates (FDR) of 14% for Hispanics and 45% for Blacks and false negative rates (FNR) of 21% for Hispanics and 27% for Blacks in diagnosing airway obstruction. These findings indicate that removing race as a covariate in spirometry equations increases FDR and FNR, leading to higher misclassification rates. The 4%-13% discordance in interpreting airway obstruction and restrictive patterns has significant clinical implications, underscoring the need for careful consideration in developing spirometry reference equations.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 5","pages":"e70212"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate discordance, binary classification, and model fit between race-predicted and race-neutral spirometry prediction equations. Spirometry data from 9506 patients (18-95 years old) self-identifying as White, Black, or Hispanic were analyzed, focusing on the lower limit of normal (LLN). Best-fit prediction equations were developed from 3771 patients with normal spirometry, using Bayesian Information Criterion (BIC) to compare models with and without race as a covariate. Results showed that including race as a covariate improved model fit, reducing BIC by at least ten units compared to Race-Neutral equations. Discordance between race-specific and race-neutral equations for detecting airway obstruction and restrictive spirometry patterns ranged from 4% to 13%. Using race-neutral equations resulted in false discovery rates (FDR) of 14% for Hispanics and 45% for Blacks and false negative rates (FNR) of 21% for Hispanics and 27% for Blacks in diagnosing airway obstruction. These findings indicate that removing race as a covariate in spirometry equations increases FDR and FNR, leading to higher misclassification rates. The 4%-13% discordance in interpreting airway obstruction and restrictive patterns has significant clinical implications, underscoring the need for careful consideration in developing spirometry reference equations.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.