A novel trait to reduce the mechanical damage of peach fruits at harvest: The first genetic dissection study for peduncle length.

IF 2.6 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-02-24 eCollection Date: 2025-03-01 DOI:10.1007/s11032-025-01547-3
Cassia da Silva Linge, Angelo Ciacciulli, Irina Baccichet, Remo Chiozzotto, Elisa Calastri, Alessandro Giulio Tagliabue, Laura Rossini, Daniele Bassi, Marco Cirilli
{"title":"A novel trait to reduce the mechanical damage of peach fruits at harvest: The first genetic dissection study for peduncle length.","authors":"Cassia da Silva Linge, Angelo Ciacciulli, Irina Baccichet, Remo Chiozzotto, Elisa Calastri, Alessandro Giulio Tagliabue, Laura Rossini, Daniele Bassi, Marco Cirilli","doi":"10.1007/s11032-025-01547-3","DOIUrl":null,"url":null,"abstract":"<p><p>In peach, a long peduncle can help minimize mechanical damages/physical injuries in the fruit at harvest and can also be useful in postharvest handling and transportation. In view of genetically dissecting the peduncle length (PL) in peach, we have performed a Quantitative Trait Locus (QTL) mapping study for PL using a F<sub>2</sub> progeny of 117 individuals from the cross 'PI 91459 [NJ Weeping]' x 'Bounty' (WxBy). The progeny was phenotyped for three years (2011, 2012 and 2014) and the QTL mapping analysis was performed using four methods: Kruskall-Wallis, Interval Mapping, Multiple QTL Mapping and Genome-Wide Composite Interval Mapping. QTL analysis led to the identification of 9 QTLs distributed on linkage groups (LG) 1, 2, 4, 5, 6 and 7. A stable QTL was identified on LG6 (22,978,897 to 24,666,094 bp) and explained up to 63% of the phenotypic variance. Within the genetic interval of the stable QTL on LG6 potential candidate genes with functional annotation encompassing cellular expansion, hormone regulation, transcriptional regulation, developmental processes such as meristem development, and responses to environmental cues were found. The results reported in this study represent the first insight into the genetic basis of PL and a step forward towards the introduction of novel traits in peach commercial breeding in order to minimize the problems related to mechanical damage/injuries to peach fruits that commonly might occur during at harvest and post-harvest processes.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01547-3.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 3","pages":"29"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01547-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

In peach, a long peduncle can help minimize mechanical damages/physical injuries in the fruit at harvest and can also be useful in postharvest handling and transportation. In view of genetically dissecting the peduncle length (PL) in peach, we have performed a Quantitative Trait Locus (QTL) mapping study for PL using a F2 progeny of 117 individuals from the cross 'PI 91459 [NJ Weeping]' x 'Bounty' (WxBy). The progeny was phenotyped for three years (2011, 2012 and 2014) and the QTL mapping analysis was performed using four methods: Kruskall-Wallis, Interval Mapping, Multiple QTL Mapping and Genome-Wide Composite Interval Mapping. QTL analysis led to the identification of 9 QTLs distributed on linkage groups (LG) 1, 2, 4, 5, 6 and 7. A stable QTL was identified on LG6 (22,978,897 to 24,666,094 bp) and explained up to 63% of the phenotypic variance. Within the genetic interval of the stable QTL on LG6 potential candidate genes with functional annotation encompassing cellular expansion, hormone regulation, transcriptional regulation, developmental processes such as meristem development, and responses to environmental cues were found. The results reported in this study represent the first insight into the genetic basis of PL and a step forward towards the introduction of novel traits in peach commercial breeding in order to minimize the problems related to mechanical damage/injuries to peach fruits that commonly might occur during at harvest and post-harvest processes.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01547-3.

减少桃果实收获时机械损伤的新性状:花序梗长度的首次遗传解剖研究。
在桃子中,长梗可以帮助减少收获时果实的机械损伤/物理损伤,也可以在收获后的处理和运输中使用。摘要为了对桃树花序梗长度(PL)进行遗传解剖,利用杂交品种“PI 91459 [NJ Weeping]”和“Bounty”(WxBy)的F2代117个个体进行了花序梗长度的数量性状位点(QTL)定位研究。在2011年、2012年和2014年对后代进行表型分析,采用Kruskall-Wallis、区间定位、多QTL定位和全基因组复合区间定位4种方法进行QTL定位分析。QTL分析共鉴定出9个QTL,分布在连锁群(LG) 1、2、4、5、6和7上。在LG6上鉴定出一个稳定的QTL (22,978,897 ~ 24,666,094 bp),解释了高达63%的表型变异。在LG6上的稳定QTL的遗传区间内,发现了具有功能注释的潜在候选基因,包括细胞扩增,激素调节,转录调节,分生组织发育等发育过程以及对环境线索的响应。本研究的结果首次揭示了桃果实损伤的遗传基础,并朝着在桃子商业育种中引入新性状的方向迈出了一步,从而最大限度地减少收获期间和收获后可能发生的桃果实机械损伤问题。补充资料:在线版本包含补充资料,下载地址:10.1007/s11032-025-01547-3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信